Ma 227	Exam IA Solutions	10/13/11
Name:		
Lecture Section:	Recitation Section:	
I pledge my honor that I have ab	oided by the Stevens Honor System.	
	lator, cell phone, or computer while taking this exa it. Credit will not be given for work not reasonably the pledge.	
Score on Problem #1		
#2a		
#2b		
#3		

Total Score

1 [25 **pts**.] Find the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 1 & 1 \\ -2 & 4 \end{array} \right]$$

Show that the eigenvectors you find are linearly independent. Solution:

$$\begin{vmatrix} 1-r & 1 \\ -2 & 4-r \end{vmatrix} = (1-r)(4-r) + 2 = 4-5r+r^2+2 = r^2-5r+6 = (r-3)(r-2)$$

Thus the eigenvalues are r = 2, 3.

The system of equations (A - rI)X = 0 is

$$(1-r)x_1 + x_2 = 0$$
$$-2x_1 + (4-r)x_2 = 0$$

For r = 2 the system becomes

$$-x_1 + x_2 = 0$$

$$-2x_1 + x_2 = 0$$

Thus $x_1 = x_2$ and an eigenvector for r = 2 is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. For r = 3 the system becomes

$$-2x_1 + x_2 = 0$$

$$-2x_1 + x_2 = 0$$

so $x_2 = 2x_1$. Thus an eigenvector for r = 3 is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Since

$$\left|\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right| = 1 \neq 0$$

these vectors are linearly independent.

SNB check: $\begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$, eigenvectors: $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \leftrightarrow 2$, $\left\{ \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} \right\} \leftrightarrow 3$

2 The eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}$$

are
$$\begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \leftrightarrow 0, \begin{bmatrix} -3 \\ 1 \end{bmatrix} \leftrightarrow 5.$$

2a [25 **pts**.] Solve the initial value problem

$$x' = Ax, \ x(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

where
$$A = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}$$
.

$$x_h(t) = c_1 \begin{bmatrix} -\frac{1}{2}e^{0t} \\ 1e^{0t} \end{bmatrix} + c_2 \begin{bmatrix} -3e^{5t} \\ e^{5t} \end{bmatrix} = c_1 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -3e^{5t} \\ e^{5t} \end{bmatrix}$$
$$x_h(0) = c_1 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Thus

$$-\frac{1}{2}c_1 - 3c_2 = 2$$
$$c_1 + c_2 = 0$$

so $c_1 = -c_2$ and the first equation becomes

$$-\frac{1}{2}c_1 + 3c_1 = \frac{5}{2}c_1 = 2$$

Hence $c_1 = \frac{4}{5}$ and $c_2 = -\frac{4}{5}$

$$x_h(t) = \frac{4}{5} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} - \frac{4}{5} \begin{bmatrix} -3e^{5t} \\ e^{5t} \end{bmatrix}$$

 $2b \lceil 30 \text{ pts.} \rceil$ Find a general solution of the nonhomogeneous system

$$x' = Ax + \left[\begin{array}{c} 2e^{-t} \\ 0 \end{array} \right]$$

where
$$A = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}$$
.

Solution: Let

$$x_p(t) = \begin{bmatrix} a_1 e^{-t} \\ a_2 e^{-t} \end{bmatrix}$$

Then the DE implies

$$\begin{bmatrix} -a_1e^{-t} \\ -a_2e^{-t} \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} a_1e^{-t} \\ a_2e^{-t} \end{bmatrix} + \begin{bmatrix} 2e^{-t} \\ 0 \end{bmatrix}$$

We may cancel e^{-t} on both sides of the equation and then we have

$$\begin{bmatrix} -a_1 \\ -a_2 \end{bmatrix} = \begin{bmatrix} 6a_1 + 3a_2 + 2 \\ -2a_1 - a_2 \end{bmatrix}$$

Thus

$$-7a_1 - 3a_2 = 2$$
$$2a_1 = 0$$

so $a_1 = 0$ and $a_2 = -\frac{2}{3}$. Finally

$$x_p(t) = \begin{bmatrix} 0 \\ -\frac{2}{3}e^{-t} \end{bmatrix}$$

Check on x_p

$$\begin{bmatrix} 0 \\ -\frac{2}{3}e^{-t} \end{bmatrix}' = \begin{bmatrix} 0 \\ \frac{2}{3}e^{-t} \end{bmatrix} \text{ and } \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{2}{3}e^{-t} \end{bmatrix} + \begin{bmatrix} 2e^{-t} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{2}{3}e^{-t} \end{bmatrix}$$
$$x(t) = x_h(t) + x_p(t) = c_1 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -3e^{5t} \\ e^{5t} \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{2}{3}e^{-t} \end{bmatrix}$$

3 [20 **pts**.] Find the inverse of the matrix

$$\left[\begin{array}{cccc}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]$$

Solution: We form

Multiply row 1 by -1 and add it to rows 2 and 3

Multiply row 2 by −3 and add it to row 1

Multiply row 3 by -3 and add it to row 1

Thus the inverse is

$$\left[
\begin{array}{cccc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}
\right]$$

SNB check:
$$\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, inverse:
$$\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$