Ma 227		Exam IB	3/3/04
Name:		ID:	
Lecture Section : _		Recitation Section:	
	I have abided by the	Stevens Honor System.	
You may not use	a calculator, cell ull credit. Credi	phone, or computer while taking the t will not be given for work not reaso	
Score on Problem	#1		
	#2		
	#3		
Total Score			

$$A = \left[\begin{array}{cc} 3 & 2 \\ 4 & 3 \end{array} \right]$$

Find A^{-1} . Be sure to show all the steps in your calculation and indicate what you are doing in each step.

2 Let

$$A = \left[\begin{array}{cc} 2 & -4 \\ -1 & -1 \end{array} \right]$$

2a [**20 pts**.] Find all eigenvalues and eigenvectors of the matrix *A*.

.

2b [**20 pts**.] Find a general homogeneous solution of

$$x'(t) = Ax(t)$$

where A is the matrix above in part 2a.

 $2c \left[20 \text{ pts.} \right]$ Find a general solution of $x'(t) = Ax(t) + \begin{bmatrix} e^{-3t} \\ -e^{-3t} \end{bmatrix}$

where A is the matrix above in part 2a.

3 [20 **pts**.] Rewrite the scalar equation

$$y'' - ty' + 10y = \cos t$$

as a first-order system in normal form.