Ma 227		Exam IB Solutions	3/3/04
Name:		ID:	
Lecture Section:	Reci	tation Section:	
I pledge my honor that I ha	ive abided by the Steve	ns Honor System.	
· ·	credit. Credit will	ne, or computer while taking this exam. not be given for work not reasonably so	
Score on Problem #1			
#2	·		
#3			

Total Score

$$A = \left[\begin{array}{cc} 3 & 2 \\ 4 & 3 \end{array} \right]$$

Find A^{-1} . Be sure to show all the steps in your calculation and indicate what you are doing in each step.

Solution:

$$\begin{bmatrix} 3 & 2 & 1 & 0 \\ 4 & 3 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{3}R_1} \begin{bmatrix} 1 & \frac{2}{3} & \frac{1}{3} & 0 \\ 4 & 3 & 0 & 1 \end{bmatrix} \xrightarrow{-4R_1+R_2} \begin{bmatrix} 1 & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & -\frac{4}{3} & 1 \end{bmatrix} \xrightarrow{-(2)R_2+R_1} \begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & \frac{1}{3} & -\frac{4}{3} & 1 \end{bmatrix}$$

$$\xrightarrow{3R_2} \begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & -4 & 3 \end{bmatrix} \quad \text{Thus } A^{-1} = \begin{bmatrix} 3 & -2 \\ -4 & 3 \end{bmatrix}$$

$$\text{Checks Where SNR we have } \begin{bmatrix} 3 & 2 \\ 3 & 2 \end{bmatrix} \text{ in terms } \begin{bmatrix} 3 & -2 \\ -4 & 3 \end{bmatrix}$$

Check: Using SNB we have $\begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$, inverse: $\begin{bmatrix} 3 & -2 \\ -4 & 3 \end{bmatrix}$.

2 Let

$$A = \left[\begin{array}{cc} 2 & -4 \\ -1 & -1 \end{array} \right]$$

2a [20 pts.] Find all eigenvalues and eigenvectors of the matrix A.

Solution: det
$$\begin{bmatrix} 2-r & -4 \\ -1 & -1-r \end{bmatrix}$$
 = $(2-r)(-1-r)-4=r^2-r-6=(r-3)(r+2)=0$ and the

eigenvalues are r = 3, -2. The system of equations (A - rI)U = 0 is

$$(2-r)u_1 - 4u_2 = 0$$
$$-u_1 + (-1-r)u_2 = 0$$

For r = 3 this is

$$-1u_1 - 4u_2 = 0$$

$$-u_1 - 4u_2 = 0$$

Thus $u_1 = -4u_2$ and an eigenvector corresponding to r = 3 is $U_1 = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$ or $\begin{bmatrix} 1 \\ -\frac{1}{4} \end{bmatrix}$.

For r = -2 we have

$$4u_1 - 4u_2 = 0$$

- $u_1 + u_2 = 0$

so $u_1 = u_2$ and an eigenvector corresponding to r = -2 is $U_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

2b [20 pts.] Find a general homogeneous solution of

$$x'(t) = Ax(t)$$

where A is the matrix above in part 2a.

Solution: Two linearly independent homogeneous solutions are $e^{3t}\begin{bmatrix} -4 \\ 1 \end{bmatrix}$ and $e^{-2t}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so $x_h(t) = c_1 e^{3t}\begin{bmatrix} -4 \\ 1 \end{bmatrix} + c_2 e^{-2t}\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4e^{3t} & e^{-2t} \\ e^{3t} & e^{-2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

 $2c \lceil 20 \text{ pts.} \rceil$ Find a general solution of

$$x'(t) = Ax(t) + \begin{bmatrix} e^{-3t} \\ -e^{-3t} \end{bmatrix}$$

where A is the matrix above in part 2a.

Solution: Let
$$x_p(t) = e^{-3t} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
. Then
$$e^{-3t} \begin{bmatrix} -3a_1 \\ -3a_2 \end{bmatrix} = e^{-3t} \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

or

$$\begin{bmatrix} -3a_1 \\ -3a_2 \end{bmatrix} = \begin{bmatrix} 2a_1 - 4a_2 + 1 \\ -a_1 - a_2 - 1 \end{bmatrix}$$

or

$$5a_1 - 4a_2 = -1$$
$$-a_1 + 2a_2 = 1$$

, Solution is: $\left[a_1 = \frac{1}{3}, a_2 = \frac{2}{3}\right]$ and

$$x_p(t) = e^{-3t} \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

SO

$$x(t) = x_h(t) + x_p(t) = c_1 e^{3t} \begin{bmatrix} -4 \\ 1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + e^{-3t} \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$= \begin{bmatrix} -4e^{3t} & e^{-2t} \\ e3^t & e^{-2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{3}e^{-3t} \\ \frac{2}{3}e^{-3t} \end{bmatrix}$$

$$\text{SNB gives:} \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} e^{-3t} \\ -e^{-3t} \end{bmatrix} = \begin{bmatrix} 2x_1 - 4x_2 + e^{-3t} \\ -x_1 - x_2 - e^{-3t} \end{bmatrix}$$

$$x_1' = 2x_1 - 4x_2 + e^{-3t}$$

$$x_2' = -x_1 - x_2 - e^{-3t}$$

, Exact solution is:
$$\left[x_1(t) = \frac{1}{3}e^{-3t} + C_5e^{-2t} - 4C_6e^{3t}, x_2(t) = \frac{2}{3}e^{-3t} + C_5e^{-2t} + C_6e^{3t}\right]$$

3 [20 pts.] Rewrite the scalar equation

$$y'' - ty' + 10y = \cos t$$

as a first-order system in normal form.

Solution: Let $x_1(t) = y(t), x_2(t) = y'(t)$. With these substitutions and noting that $y'' = ty' - 10y + \cos t$ the DE becomes the system

$$x_1'(t) = 0x_1(t) + x_2(t)$$

$$x_2'(t) = -10x_1(t) + tx_2(t) + \cos t$$

we have

$$x'(t) = Ax(t) + f(t)$$

where

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} A = \begin{bmatrix} 0 & 1 \\ -10 & t \end{bmatrix} \text{ and } f(t) = \begin{bmatrix} 0 \\ \cos t \end{bmatrix}$$

or

$$\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -10 & t \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \cos t \end{bmatrix}$$