Ma 227	Exam IB	2/28/05
Print Name:		
Lecture Section:	Recitation Section:	
I pledge my honor that I have abided b	by the Stevens Honor System.	
	cell phone, or computer while taking this redit will not be given for work not reason pledge.	
Score on Problem #1	_	
#2	_	
#3	_	
Total Score		

Print Name:

1 [20 **pts**.] Let

$$A = \left[\begin{array}{cc} 1 & 2 \\ 5 & 7 \end{array} \right]$$

Find A^{-1} . Be sure to show all the steps in your calculation and indicate what you are doing in each step.

Print Name: _____

2 Let

$$A = \left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right]$$

2a [**20 pts**.] Find all eigenvalues and eigenvectors of the matrix *A*.

.

Print Name:

2b [20 pts.] Find a general solution of the homogeneous system

$$\frac{dx_1}{dt} = 3x_1 + x_2$$

$$\frac{dx_1}{dt} = 3x_1 + x_2$$

$$\frac{dx_2}{dt} = x_1 + 3x_2$$

2c [20 **pts**.] Find a general solution of

$$\frac{dx_1}{dt} = 3x_1 + x_2 + 8t - 1$$
$$\frac{dx_2}{dt} = x_1 + 3x_2 - 1$$

$$\frac{dx_2}{dt} = x_1 + 3x_2 - 1$$

Print Name: _____

3 [20 pts.] Find all solutions, if they exist, of

$$x_1 - 3x_2 + 4x_3 + 4x_4 = 1$$

$$2x_1 - 5x_2 + 6x_3 + 6x_4 = 1$$

$$3x_1 - 7x_2 + 9x_3 + 8x_4 = 3$$