Name: \qquad
Lecture Section: \qquad Recitation Section: \qquad

I pledge my honor that I have abided by the Stevens Honor System.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

Score on Problem \#1 \qquad
\qquad

Total Score

1 [25 pts.] Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]
$$

Show that the eigenvectors you find are linearly independent.

2 The eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-3 & 5
\end{array}\right]
$$

$\operatorname{are}\left[\begin{array}{l}1 \\ 1\end{array}\right] \leftrightarrow 2,\left[\begin{array}{l}\frac{1}{3} \\ 1\end{array}\right] \leftrightarrow 4$.
$2 a$ [25 pts.] Solve the initial value problem

$$
x^{\prime}=A x, x(0)=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

where $A=\left[\begin{array}{cc}1 & 1 \\ -3 & 5\end{array}\right]$.
$2 b$ [30 pts.] Find a general solution of the nonhomogeneous system

$$
x^{\prime}=A x+\left[\begin{array}{c}
2 e^{-t} \\
0
\end{array}\right]
$$

where $A=\left[\begin{array}{cc}1 & 1 \\ -3 & 5\end{array}\right]$.

3 [20 pts.] Find the inverse of the matrix

$$
\begin{array}{lll}
1 & 4 & 4 \\
1 & 5 & 4 \\
1 & 4 & 5
\end{array}
$$

