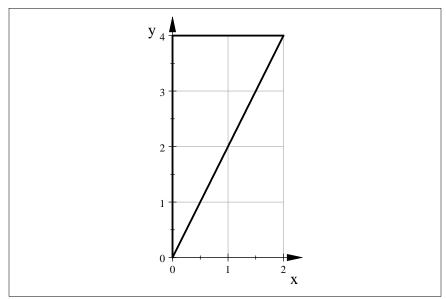
Name: _____


Lecture Section: _____

1 [25 pts.] Evaluate the integral

$$\iint\limits_{D}e^{2y^2}dA$$

where D is the triangle bounded by the lines y = 2x, y = 4, and x = 0. Sketch D.

Solution: The lines y = 2x, y = 4 intersect at (2,4). Thus D is shown below. $\frac{x}{2}$

We cannot do the *y* integration first. Thus

$$\iint_{D} e^{2y^{2}} dA = \int_{0}^{4} \int_{0}^{\frac{1}{2}y} e^{2y^{2}} dx dy$$

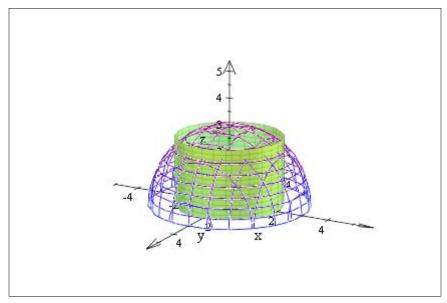
$$= \int_{0}^{4} \frac{1}{2} y e^{2y^{2}} dy = \frac{1}{8} e^{2y^{2}} \Big|_{0}^{4} = \frac{1}{8} \left(e^{32} - 1 \right)$$

2 a [20 **pts**.] Calculate the

$$\iint\limits_{R} \cos \sqrt{x^2 + y^2} \, dA$$

The region *R* is the disk $x^2 + y^2 \le \pi^2$.

Solution: We switch to polar coordinates. Then we have (Using an integral from the table.)


$$\iint_{R} \cos \sqrt{x^2 + y^2} \, dA = \iint_{R} \cos \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} \, r dr d\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{\pi} r \cos r(r) dr d\theta = \int_{0}^{2\pi} [\cos r + r \sin r]_{0}^{\pi} d\theta$$
$$= \int_{0}^{2\pi} [-2] = -4\pi$$

2 b [15 pts.] Give an integral in rectangular coordinates for the surface area of the portion of the hemisphere

 $x^2 + y^2 + z^2 = 9$, $z \ge 0$ that lies above the circular region $x^2 + y^2 \le 4$ in the x, y -plane. Sketch the surface area to be found. DO NOT EVALUATE THIS INTEGRAL.

Solution:

$$x^2 + y^2 + z^2 = 9$$

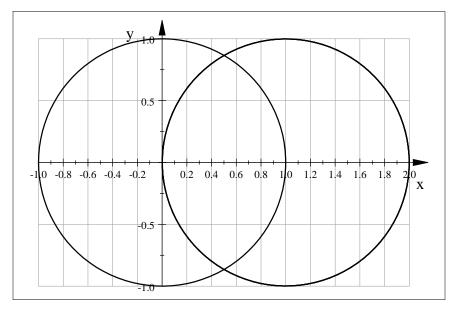
Surface Area =
$$\iint_{R} \sqrt{1 + (z_x)^2 + (z_y)^2} dA$$

where *R* is the projection of the surface onto the x,y-plane. The equation of the hemisphere can be written as $z^2 = 25 - x^2 - y^2$. Differentiating we have $2zz_x = -2x$ or $z_x = -\frac{x}{z}$. Similarly, $z_y = -\frac{y}{z}$. Therefore

$$\sqrt{1 + (z_x)^2 + (z_y)^2} = \sqrt{1 + \frac{x^2}{z^2} + \frac{y^2}{z^2}} = \frac{1}{z} \sqrt{z^2 + x^2 + y^2} = \frac{3}{\sqrt{9 - x^2 - y^2}}$$
Surface Area =
$$\iint_{x^2 + y^2 \le 4} \frac{3}{\sqrt{9 - x^2 - y^2}} dA$$

$$= \int_{-2}^{2} \int_{-\sqrt{4 - y^2}}^{\sqrt{4 - y^2}} \frac{3}{\sqrt{9 - x^2 - y^2}} dx dy = \int_{-2}^{2} \int_{-\sqrt{4 - x^2}}^{\sqrt{4 - x^2}} \frac{3}{\sqrt{9 - x^2 - y^2}} dy dx$$

3 [25 **pts**.] Give a triple integral in cylindrical coordinates for the volume of the of the solid region cut from

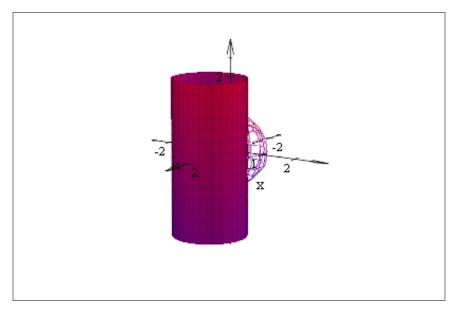

the sphere

$$x^2 + y^2 + z^2 = 1$$

by the cylinder $r = 2\cos\theta$. Sketch the solid. DO NOT EVALUATE THIS INTEGRAL.

Solution: In the x, y -plane $r = 2\cos\theta$ is the circle $(x-1)^2 + y^2 = 1$ shown below. We also need to plot the circle r = 1.

 $2\sin\theta$


The circles intersect at

$$2\cos\theta = 1$$

or $\cos \theta = \frac{1}{2}$ that is at $\theta = \pm \frac{\pi}{3}$. Hence there are 3 areas of integration.

The volume is shown below.

$$x^2 + y^2 + z^2 = 1$$

We shall use cylindrical coordinates. In cylindrical coordinates the equation of the sphere is $r^2 + z^2 = 1$ so

$$-\sqrt{1-r^2} \le z \le \sqrt{1-r^2}$$

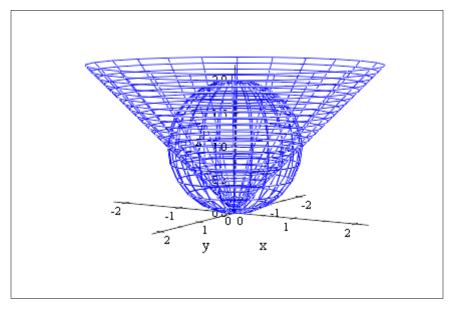
From the picture of the two circles shown in the x, y –plane above three integrals are required for the volume. The volume is given by

$$V = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{3}} \int_{0}^{2\cos\theta} \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} r dz dr d\theta + \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{0}^{1} \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} r dz dr d\theta + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} r dz dr d\theta$$

4 [20 **pts**.] Give an integral expression in **spherical** coordinates for the volume of the solid that lies above

the cone $\phi = \frac{\pi}{4}$ and below the sphere $\rho = 2a\cos\phi$. Sketch the volume. *Do not evaluate this expression.*

Solution: The equation of the sphere may be written as $\rho^2 = 2a\rho\cos\phi$ which in Cartesian coordinates is


$$x^2 + y^2 + z^2 = 2az$$

or

$$x^2 + y^2 + (z - a)^2 = a^2$$

Thus the sphere has center at (0,0,a) and radius a.

$$\left(\rho,\theta,\frac{\pi}{4}\right)$$

The volume is given by

Volume =
$$\iiint\limits_{V} dV = \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2a\cos\phi} \rho^{2} \sin\phi d\rho d\phi d\theta$$

Table of Integrals

$$\int x \sin x dx = \sin x - x \cos x + C$$

$$\int x \cos x dx = \cos x + x \sin x + C$$

$$\int \sin^2 x dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \sin^3 x dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + C$$

$$\int \cos^3 x dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x + C$$

$$\int \sin^4 x dx = \frac{3}{8} x - \frac{3}{16} \pi - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$$

$$\int \cos^4 x dx = \frac{3}{8} x + \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$$

$$\int te^{at} dt = \frac{1}{a^2} e^{at} (at - 1) + C$$

$$\int t^2 e^{at} dt = \frac{1}{a^3} e^{at} (a^2 t^2 - 2at + 2) + C$$