Ma 227		Exam II	11/8/10
Name:		<u></u>	
Lecture Section: _			
I pledge my honor that	I have abided by the Stevens H	onor System.	
shown to obtain fu you finish, be sure	ll credit. Credit will not to sign the pledge.	or computer while taking this exam. t be given for work not reasonably su	
There is a table of	integrals on the last pag	ge of the exam.	
Score on Problem	#1		
#	² 2a		
#	² 2b		
#	23		
#	4		
Total Score			

1 [25 pts.] Set up iterated integrals for both orders of integration for

$$\iint_D y^2 e^{xy} dA, \ D \text{ is bounded by } y = x, y = 4, x = 0$$

Sketch D and evaluate this double integral.

$$\iint\limits_R x dA$$

where R is the region in the first quadrant that lies between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$. Sketch R.

2 b [15 **pts**.] Give an integral for the surface area of the part of the surface $z = x^2 + y$ that lies above the triangle in the x, y –plane with vertices (0,0), (1,0), and (0,2). Sketch the triangle. DO NOT EVALUATE THIS INTEGRAL.

3 [20 pts.] Use cylindrical coordinates to set up and iterated triple integral for the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3. Evaluate this integral.

[20 **pts**.] Use spherical coordinates to evaluate

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz dx dy$$

Table of Integrals

$$\int \sin^2 x dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \sin^3 x dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + C$$

$$\int \cos^3 x dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x + C$$

$$\int t e^{at} dt = \frac{1}{a^2} e^{at} (at - 1) + C$$

$$\int t^2 e^{at} dt = \frac{1}{a^3} e^{at} (a^2 t^2 - 2at + 2) + C$$