%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % Scientific Word Wrap/Unwrap Version 3.0 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/ma227_exam_2a_05s_sol_v3.tex", Document, 11693, 4/4/2005, 17:39:33, ""% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%% Start /document/ma227_exam_2a_05s_sol_v3.tex %%%%%%%%%%%% %\newtheorem{theorem}{Theorem} %\newtheorem{axiom}[theorem]{Axiom} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{corollary}[theorem]{Corollary} %\newtheorem{definition}[theorem]{Definition} %\newtheorem{example}[theorem]{Example} %\newtheorem{exercise}[theorem]{Exercise} %\newtheorem{lemma}[theorem]{Lemma} %\newtheorem{proposition}[theorem]{Proposition} %\newtheorem{remark}[theorem]{Remark} \documentclass{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{graphicx} \usepackage{amsmath} \setcounter{MaxMatrixCols}{10} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=5.00.0.2606} %TCIDATA{} %TCIDATA{BibliographyScheme=Manual} %TCIDATA{Created=Thursday, February 17, 2000 14:43:24} %TCIDATA{LastRevised=Monday, April 04, 2005 13:39:33} %TCIDATA{} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=webmath_11pt.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{AllPages= %H=36 %F=36,\PARA{035

\thepage } %} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \subsection*{Ma 227 \hspace{2.25in} Exam IIA Solutions\hfill 4/4/05} \subsection*{{\protect\normalsize Name: \protect\underline{\hspace{2.5in}} \hfill }} \subsection*{{\protect\normalsize Lecture Section: \_\_\_\_\_\_\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \ \ \ \ \ \ \ Recitation Section: \_\_\_\_\hspace{2.5in}\hfill }} \hfill {\small \textit{I pledge my honor that I have abided by the Stevens Honor System.}\hspace{2pt} \ \ \ \ \ \ \ \ \ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_% \_\_\_\_} \hfill \paragraph{You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.} \vspace{1pt} Score on Problem \ \#1 \_\_\_\_\_\_\_\_\vspace{0.2cm} \qquad \qquad \qquad \qquad\ \ \ \#2 \_\_\_\_\_\_\_\_\vspace{0.2cm} \qquad \qquad \qquad \qquad\ \ \ \#3 \_\_\_\_\_\_\_\_\vspace{0.2cm} \qquad \qquad \qquad \qquad\ \ \#4 \ \_\_\_\_\_\_\_\_\qquad \qquad \qquad \qquad\ \ \qquad \qquad \qquad \qquad\ \ \qquad \qquad \qquad \qquad\ \ \qquad \qquad \qquad \qquad\ \ Total Score \ \ \ \ \ \ \ \ \ \ \ \ \ \ \_\_\_\_\_\_\_\_\bigskip \pagebreak \begin{description} \item[{1 [$25$ pts.]}] Give two double integral expressions for the area of the region $R$ bounded by the parabola $x=-y^{2}$ and the line \end{description} $y=x+2.$ Do not evaluate these integrals. Be sure to sketch $R.$ Solution: $x=-y^{2}$\FRAME{dtbpFX}{4.4998in}{2.9999in}{0pt}{}{}{Plot}{\special% {language "Scientific Word";type "MAPLEPLOT";width 4.4998in;height 2.9999in;depth 0pt;display "USEDEF";plot_snapshots FALSE;mustRecompute FALSE;lastEngine "Maple";xmin "-5";xmax "0";ymin "-5";ymax "5";xviewmin "-5.1";xviewmax "0.102";yviewmin "-3.1047138047138";yviewmax "2.34249831649832";plottype 12;num-x-gridlines 24;num-y-gridlines 24;plotstyle "patch";axesstyle "normal";xis \TEXUX{x};yis \TEXUX{y};var1name \TEXUX{$x$};var2name \TEXUX{$y$};function \TEXUX{$x=-y^{2}$};linecolor "black";linestyle 1;pointstyle "point";linethickness 3;lineAttributes "Solid";var1range "-5,0";var2range "-5,5";num-x-gridlines 73;num-y-gridlines 73;curveColor "[flat::RGB:0000000000]";curveStyle "Line";rangeset"X";function \TEXUX{$y=x+2$};linecolor "black";linestyle 1;pointstyle "point";linethickness 3;lineAttributes "Solid";var1range "-5,0";var2range "-5,5";num-x-gridlines 24;num-y-gridlines 24;curveColor "[flat::RGB:0000000000]";curveStyle "Line";rangeset"X";}} The curves intersect when $y=-y^{2}+2$ or $y^{2}+y-2=\left( y+2\right) \left( y-1\right) =0,$ that is at $y=-2$ and $y=1.$ Hence at the points $% \left( -4,-2\right) $ and $\left( -1,1\right) $ \vspace{1pt} \begin{eqnarray*} \text{Area} &=&\int_{-4}^{-1}\int_{-\sqrt{-x}}^{x+2}dydx+\int_{-1}^{0}\int_{-% \sqrt{-x}}^{\sqrt{-x}}dydx \\ &=&\int_{-2}^{1}\int_{y-2}^{-y^{2}}dxdy=\frac{9}{2} \end{eqnarray*} \begin{description} \item[{2 a $\left[ 20\text{ pts.}\right] $}] Find the area of the ellipse cut from the plane $z=2x+2y+1$ by the cylinder $x^{2}+y^{2}=4.$ \end{description} Solution:% \begin{equation*} \text{Surface Area }=\diint\limits_{R}\sqrt{1+z_{x}^{2}+z_{y}^{2}}dA \end{equation*} $R$ is the circle centered at the origin of radius $2.$ Now $z_{x}=2$ and $% z_{y}=2$ so% \begin{equation*} \text{Surface Area}=\diint\limits_{x^{2}+y^{2}\leq 4}\sqrt{1+4+4}% dA=3\diint\limits_{x^{2}+y^{2}\leq 4}dA=3\pi \left( 2^{2}\right) =12\pi \end{equation*} \begin{description} \item[{2 b $\left[ 20\text{ pts.}\right] $}] Give a double integral in polar coordinates for the area enclosed by one petal of the rose \begin{equation*} r=\sin 3\theta \end{equation*} \end{description} Sketch the part of the petal in the first quadrant. \ Do \textit{not} evaluate this integral. \vspace{1pt}Solution: $\frac{\pi }{3}=\allowbreak 1.\,\allowbreak 047\,197\,551\,\allowbreak 197$ $% \ \ \ \ \ \ \ \ \ \ \ \ \sin 3\theta $ \FRAME{dtbpFX}{4.4998in}{2.9999in}{0pt}{}{}{Plot}{\special{language "Scientific Word";type "MAPLEPLOT";width 4.4998in;height 2.9999in;depth 0pt;display "USEDEF";plot_snapshots FALSE;mustRecompute FALSE;lastEngine "Maple";xmin "0";xmax "1.05";xviewmin "-0.021868487075261E0";xviewmax "0.898119996639583";yviewmin "-0.018688226783418E0";yviewmax "0.574110112919307";plottype 8;numpoints 100;plotstyle "patch";axesstyle "normal";xis \TEXUX{v58130};var1name \TEXUX{$\theta $};function \TEXUX{$\sin 3\theta $};linecolor "black";linestyle 1;pointstyle "point";linethickness 3;lineAttributes "Solid";coordinateSystem "polar";var1range "0,1.05";num-x-gridlines 100;curveColor "[flat::RGB:0000000000]";curveStyle "Line";rangeset"X";}} Now $\sin 3\theta =0$ implies that $3\theta =\pi $ or $\theta =\pi /3.$ Thus% \begin{equation*} \text{Area}=\int \int dA=\int_{0}^{\frac{\pi }{3}}\int_{0}^{\sin 3\theta }rdrd\theta \end{equation*} \begin{description} \item[{3 $\left[ 20\text{ pts.}\right] $}] Let $V$ be the volume bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}.$Give a triple integral expression \end{description} in \textbf{cylindrical} coordinates for the volume of $V.$ Sketch $V.$ \textit{Do not evaluate the integral you give}$.$ Solution: $r^{2}$\FRAME{dtbpFX}{4.4996in}{3in}{0pt}{}{}{Plot}{\special{language "Scientific Word";type "MAPLEPLOT";width 4.4996in;height 3in;depth 0pt;display "USEDEF";plot_snapshots FALSE;mustRecompute FALSE;lastEngine "MuPAD";xmin "-3.1416";xmax "3.1416";ymin "0";ymax "1.5";xviewmin "-1.50299999995948";xviewmax "1.50299999999996";yviewmin "-1.50299999998986";yviewmax "1.50299999998986";zviewmin "-0.004";zviewmax "4.004";phi 45;theta 45;plottype 14;num-x-gridlines 25;num-y-gridlines 25;plotstyle "patch";axesstyle "normal";plotshading "XYZ";xis \TEXUX{v58130};yis \TEXUX{z};zis \TEXUX{r};var1name \TEXUX{$\theta $};var2name \TEXUX{$z$};var3name \TEXUX{$r$};function \TEXUX{$r^{2}$};linestyle 1;pointstyle "point";linethickness 1;lineAttributes "Solid";coordinateSystem "cylindrical";var1range "-3.1416,3.1416";var2range "0,1.5";surfaceColor "[linear:XYZ:RGB:0x00ff0000:0x000000ff]";surfaceStyle "Color Patch";num-x-gridlines 25;num-y-gridlines 25;surfaceMesh "Mesh";rangeset"Y";function \TEXUX{$4-r^{2}$};linestyle 1;pointstyle "point";linethickness 1;lineAttributes "Solid";coordinateSystem "cylindrical";var1range "-3.1416,3.1416";var2range "0,1.5";surfaceColor "[linear:XYZ:RGB:0x00ffff80:0x0000ffff]";surfaceStyle "Color Patch";num-x-gridlines 25;num-y-gridlines 25;surfaceMesh "Mesh";rangeset"Y";}% } The paraboloids intersect when $x^{2}+y^{2}=4-x^{2}-y^{2},$ that is the circle $x^{2}+y^{2}=2$ Thus since $z$ goes from the paraboloid $z=x^{2}+y^{2}=r^{2}$ to the paraboloid $z=4-\left( x^{2}+y^{2}\right) =4-r^{2}$ \vspace{1pt} \begin{equation*} \text{Volume}=\diiint\limits_{V}dV=\int_{0}^{2\pi }\int_{0}^{\sqrt{2}% }\int_{r^{2}}^{4-r^{2}}rdzdrd\theta =4\pi \end{equation*} \begin{description} \item[{4 [$15$ pts.]}] Give an integral expression in \textbf{spherical} coordinates for the volume of the solid that lies above the cone \end{description} $\phi =\frac{\pi }{6}$ and below the sphere $\rho =2a\cos \phi .$ Sketch the volume. \textit{Do not evaluate this expression.} \vspace{1pt}Solution: \vspace{1pt}$\left( \rho ,\theta ,\frac{\pi }{6}\right) $\FRAME{dtbpFX}{% 4.4998in}{2.9999in}{0pt}{}{}{Plot}{\special{language "Scientific Word";type "MAPLEPLOT";width 4.4998in;height 2.9999in;depth 0pt;display "USEDEF";plot_snapshots FALSE;mustRecompute FALSE;lastEngine "Maple";xmin "-3.1416";xmax "3.1416";ymin "0";ymax "3.1416";xviewmin "-1.63363199995676";xviewmax "1.63488863999914";yviewmin "-1.63363199998898";yviewmax "1.63488863998897";zviewmin "-0.054414108170584E0";zviewmax "2.77620779886319";phi 82;theta 31;plottype 15;constrained TRUE;num-x-gridlines 25;num-y-gridlines 25;plotstyle "wireframe";axesstyle "normal";plotshading "NONE";xis \TEXUX{v58130};yis \TEXUX{v58144};var1name \TEXUX{$\theta $};var2name \TEXUX{$\phi $};function \TEXUX{$\left( \rho ,\theta ,\frac{\pi }{6}\right) $};linestyle 1;pointstyle "point";linethickness 1;lineAttributes "Solid";coordinateSystem "spherical";var1range "-3.1416,3.1416";var2range "0,3.1416";surfaceColor "[flat::RGB:0x00ff0000:0x000000ff]";surfaceStyle "Wire Frame";num-x-gridlines 25;num-y-gridlines 25;surfaceMesh "Mesh";rangeset"Y";function \TEXUX{$2\cos \phi $};linestyle 1;pointstyle "point";linethickness 1;lineAttributes "Solid";coordinateSystem "spherical";var1range "-3.1416,3.1416";var2range "0,3.1416";surfaceColor "[flat::RGB:0x00ff0000:0x000000ff]";surfaceStyle "Wire Frame";num-x-gridlines 25;num-y-gridlines 25;surfaceMesh "Mesh";}} The volume is given by% \begin{equation*} \text{Volume}=\diiint\limits_{V}dV=\int_{0}^{2\pi }\int_{0}^{\frac{\pi }{6}% }\int_{0}^{2a\cos \phi }\rho ^{2}\sin \phi d\rho d\phi d\theta \end{equation*} \pagebreak \section{\protect\vspace{1pt}Table of Integrals} \begin{center} \vspace{1pt} \begin{tabular}{|l|} \hline $\int \sin ^{2}axdx=\allowbreak \frac{1}{a}\left( -\frac{1}{2}\cos ax\sin ax+% \frac{1}{2}ax\right) +C$ \\ \hline $\int \cos ^{2}axdx=\allowbreak \frac{1}{a}\left( \frac{1}{2}\cos ax\sin ax+% \frac{1}{2}ax\right) +C$ \\ \hline $\int \sin ^{3}axdx=\allowbreak \frac{1}{a}\left( -\frac{1}{3}\sin ^{2}ax\cos ax-\frac{2}{3}\cos ax\right) +C$ \\ \hline $\int \cos ^{3}axdx=\allowbreak \frac{1}{a}\left( \frac{1}{3}\cos ^{2}ax\sin ax+\frac{2}{3}\sin ax\right) +C$ \\ \hline \\ \hline \end{tabular} \end{center} \end{document} %%%%%%%%%%%%%% End /document/ma227_exam_2a_05s_sol_v3.tex %%%%%%%%%%%%%