Ma 227		Exam II A	11/8/11
Name:			
Lecture Section	n:		
I pledge my honor	that I have abided by the Stevens i	Honor System.	
shown to obtain you finish, be s	in full credit. Credit will no sure to sign the pledge.	or computer while taking this exam. Ot be given for work not reasonably su	
I nere is a tabl	e of integrals on the last pa	age of the exam.	
Score on Proble	em #1		
	#2a		
	#2b		
	#3		
	#4		
Total Score			

$$\int_0^1 \int_x^1 x \sqrt{1 + y^3} \, dy dx$$

Sketch the region of integration.

$$\iint\limits_R 2xydA$$

where R is the region in the second quadrant that lies between the circles of radius 2 and 5 centered at the origin. Sketch R.

2 b [15 **pts**.] Give an integral in polar coordinates for the surface area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9. DO NOT EVALUATE THIS INTEGRAL.

3 [20 **pts**.] Use cylindrical coordinates to set up an iterated triple integral for the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the plane z = 0 and inside the cylinder $x^2 + y^2 = 2x$. DO NOT EVALUATE THIS INTEGRAL.

[20 **pts**.] Use spherical coordinates to evaluate

$$\iiint_E 16zdV$$

where E is the upper half of the sphere $x^2 + y^2 + z^2 = 1$.

Table of Integrals

$$\int \sin^2 x dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \sin^3 x dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + C$$

$$\int \cos^3 x dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x + C$$

$$\int \sin^4 x dx = \frac{3}{8} x - \frac{3}{16} \pi - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$$

$$\int \cos^4 x dx = \frac{3}{8} x + \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$$

$$\int te^{at} dt = \frac{1}{a^2} e^{at} (at - 1) + C$$

$$\int t^2 e^{at} dt = \frac{1}{a^3} e^{at} (a^2 t^2 - 2at + 2) + C$$