Ma 227
Solutions

Name: \qquad

Lecture Section:

1 [25 pts.] Evaluate

$$
\int_{0}^{1} \int_{x}^{1} x^{2} \sqrt{1+y^{4}} d y d x
$$

Sketch the region of integration.
Solution: The region of integration is shown below X

Thus

$$
\begin{aligned}
\int_{0}^{1} \int_{x}^{1} x^{2} \sqrt{1+y^{4}} d y d x & =\int_{0}^{1} \int_{0}^{y} x^{2} \sqrt{1+y^{4}} d x d y \\
& =\left.\int_{0}^{1} \frac{x^{3}}{3}\right|_{0} ^{y} \sqrt{1+y^{4}} d y \\
& =\frac{1}{3} \int_{0}^{1} y^{3} \sqrt{1+y^{4}} d y \\
& =\left.\frac{1}{3}\left(\frac{1}{4}\right)\left(\frac{2}{3}\right)\left(1+y^{4}\right)^{\frac{3}{2}}\right|_{0} ^{1} \\
& =\frac{1}{18}\left(2^{\frac{3}{2}}-1\right)
\end{aligned}
$$

$2 \mathbf{a}$ [20 pts.] Evaluate

$$
\iint_{R} x y^{2} d A
$$

where R is the region in the fourth quadrant that lies between the circles of radius 2 and 5 centered at the origin. Sketch R.

Solution: The region R is shown below.

$\frac{\pi}{2}=1.5708$
Thus

$$
\begin{aligned}
\iint_{R} x y^{2} d A & =\int_{\frac{3 \pi}{2}}^{2 \pi} \int_{2}^{5}(r \cos \theta)(r \sin \theta)^{2} r d r d \theta \\
& =\left.\int_{\frac{3 \pi}{2}}^{2 \pi} \frac{r^{5}}{5}\right|_{2} ^{5} \sin ^{2} \theta \cos \theta d \theta \\
& =\left.\frac{1}{5}\left(5^{5}-2^{5}\right) \frac{\sin ^{3} \theta}{3}\right|_{\frac{3 \pi}{2}} ^{2 \pi}=\frac{\left(5^{5}-2^{5}\right)}{15}\left(0-(-1)^{3}\right)=\frac{\left(5^{5}-2^{5}\right)}{15}=\frac{3093}{15}
\end{aligned}
$$

$\mathbf{2 b}[15 \mathrm{pts}]$ Give an integral in polar coordinates for the surface area of the part of the paraboloid $z=2 x^{2}+2 y^{2}$ that lies under the plane

$z=18$. DO NOT EVALUATE THIS INTEGRAL.

Solution: This is example 2 on page 871 of our text, slightly modified.
The plane intersects the paraboloid in the circle $x^{2}+y^{2}=9, z=9$. Therefore, the given surface lies above the disk D with center the origin and radius 3 .

$$
\begin{aligned}
A & =\iint_{D} \sqrt{1+\left(z_{x}\right)^{2}+\left(z_{y}\right)^{2}} d A \\
& =\iint_{D} \sqrt{1+(4 x)^{2}+(4 y)^{2}} d A \\
& =\iint_{D} \sqrt{1+16\left(x^{2}+y^{2}\right)} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+16 r^{2}} r d r d \theta
\end{aligned}
$$

3 [20 pts.] Use cylindrical coordinates to set up an iterated triple integral for the volume of the solid that lies under the paraboloid
$z=4-x^{2} 4 y^{2}$, above the plane $z=0$ and inside the cylinder $x^{2}+y^{2}=2 x$. DO NOT EVALUATE THIS INTEGRAL.

Solution: In cylindrical coordinates the equation of the paraboloid is $z=4-r^{2}$. The cylinder is given by $r^{2}=2 r \cos \theta$ or $r=2 \cos \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, since the circle has the equation $(x-1)^{2}+y^{2}=1$ in rectangular coordinates and is centered at (0,1), has radius 1 and is located in the first and fourth quadrants.
$2 \cos \theta$

Thus

$$
V=\iiint_{E} d V=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} \int_{0}^{4-r^{2}} r d z d r d \theta
$$

4 [20 pts.] Use spherical coordinates to evaluate

$$
\iiint_{E} 16 X d V
$$

where E is the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant.
Solution: Since we are taking the portion of the sphere in the first octant, the limits for the variables are,

$$
\begin{aligned}
& 0 \leq \rho \leq 1 \\
& 0 \leq \theta \leq \frac{\pi}{2} \\
& 0 \leq \phi \leq \frac{\pi}{2}
\end{aligned}
$$

The integral is then

$$
\begin{aligned}
\iiint_{E} 16 x d V & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} 16(\rho \cos \theta \sin \phi) \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =16 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho^{3} \sin ^{2} \phi \cos \theta d \rho d \theta d \phi \\
& =\frac{16}{4} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin ^{2} \phi \cos \theta d \theta d \phi \\
& =\left.4 \int_{0}^{\frac{\pi}{2}} \sin \theta\right|_{\theta=0} ^{\theta=\frac{\pi}{2}} \sin ^{2} \phi d \phi \\
& =4 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \phi d \phi \\
& =4\left[-\frac{1}{2} \cos \phi \sin \phi+\frac{1}{2} \phi\right]_{\phi=0}^{\phi=\frac{\pi}{2}} \\
& =4\left[\frac{\pi}{4}\right]=\pi
\end{aligned}
$$

The last integration is obtained from the table of integrals at the back of the exam.

Table of Integrals

$\int \sin ^{2} x d x=-\frac{1}{2} \cos x \sin x+\frac{1}{2} x+C$
$\int \cos ^{2} x d x=\frac{1}{2} \cos x \sin x+\frac{1}{2} x+C$
$\int \sin ^{3} x d x=-\frac{1}{3} \sin ^{2} x \cos x-\frac{2}{3} \cos x+C$
$\int \cos ^{3} x d x=\frac{1}{3} \cos ^{2} x \sin x+\frac{2}{3} \sin x+C$
$\int \sin ^{4} x d x=\frac{3}{8} x-\frac{3}{16} \pi-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C$
$\int \cos ^{4} x d x=\frac{3}{8} x+\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C$
$\int t e^{a t} d t=\frac{1}{a^{2}} e^{a t}(a t-1)+C$
$\int t^{2} e^{a t} d t=\frac{1}{a^{3}}{ }^{a t}\left(a^{2} t^{2}-2 a t+2\right)+C$

