Ma 227	Exam III	A	4/25/05
Name:			
Lecture Section:		Lecturer:	
I pledge my honor that I have	abided by the Stevens Honor System.		
· ·	culator, cell phone, or computer vedit. Credit will not be given for vegn the pledge.	U	
Score on Problem #1			
#2			
#3			

Total Score

1a [**15 pts**.] Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, if

$$\vec{F}(x,y) = xz\vec{i} - yz\vec{k}$$

where C is the plane path x(t) = 4t - 1, y(t) = 2 - 2t, z(t) = t, $0 \le t \le 1$.

1b [15 pts.] Let $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$. Show that

$$\nabla(\ln r) = \frac{\vec{r}}{r^2}$$

2a [20 **pts**.] Find a function
$$\Phi(x, y, z)$$
 such that $\nabla \Phi = \vec{F}$, where
$$\vec{F}(x, y, z) = y^2 z^3 \vec{i} + (2xyz^3 + y^2) \vec{j} + 3xy^2 z^2 \vec{k}$$

.

2b [20 pts.] Verify that Green's Theorem is true for the line integral

$$\oint_C xydx + x^2y^3dy$$

where C is the triangle with vertices (0,0),(1,0),(1,2). Sketch the triangle.

3 a [10 pts.] Let S be the portion of the cylinder $x^2 + y^2 = 3$ that lies between z = 0 and z = 6. Use cylindrical coordinates to give a parametrization of S.

3 b [20 pts.] Give an expression for

$$\iint_{S} y dS$$

where *S* is the surface in part 3a. Do *not* evaluate your expression.