Name:
Lecture Section: \qquad Lecturer: \qquad

I pledge my honor that I have abided by the Stevens Honor System.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

Score on Problem \#1 \qquad
\#2 \qquad
\#3 \qquad

Total Score

1a [15 pts.] Find the work done by the force field

$$
\vec{F}(x, y)=(x-y) \vec{i}+2 x y \vec{j}
$$

along the plane path that is the graph of $y=2 x^{3}-1$ from $A=(0,-1)$ to $B=(1,1)$.

1b [15 pts.] Consider

$$
\vec{F}=\left(3 \sin x-e^{y}\right) \vec{i}+(4 \arctan x-12 y) \vec{j}+\left(e^{\cos x}+4 \cos (2 z)\right) \vec{k}
$$

Find

$$
\nabla(\operatorname{div}(\vec{F}))=\nabla(\nabla \cdot \vec{F})
$$

2a [20 pts.] Find a function $\Phi(x, y, z)$ such that $\nabla \Phi=\vec{F}$, where

$$
\vec{F}(x, y, z)=\left(2 x y z+e^{2 y}\right) \vec{i}+\left(x^{2} z+2 x e^{2 y}+z^{2} \sin y\right) \vec{j}+\left(x^{2} y-2 z \cos y+2\right) \vec{k}
$$

$\mathbf{2 b}$ [20 pts.] Verify that Green's Theorem is true for the line integral

$$
\oint_{C} y d x-x d y
$$

where C is the circle with center at the origin and radius 3 .
$\mathbf{3} \mathbf{a}$ [10 pts.] Let S be the portion of $r=\theta^{2}$ that lies between $z=x^{2}+y^{2}$ and $z=5$. Use cylindrical coordinates to give a parametrization of S.
$\mathbf{3} \mathbf{b}$ [20 pts.] Give an expression for

$$
\iint_{S} x d S
$$

where S is the surface in part 3a. Do not evaluate your expression.

