Name: \qquad
Lecture Section: \qquad Recitation Section: \qquad

I pledge my honor that I have abided by the Stevens Honor System.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

Score on Problem \#1 \qquad
\qquad
2
\qquad
\#4 \qquad

Total Score
$\mathbf{1}$ [30 pts.] Evaluate the surface integral

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

where

$$
\vec{F}=y \vec{i}+x \vec{j}+z \vec{k}
$$

and S is the surface $3 x+3 y+z=6$ in the first octant oriented with upward normal.

2 [25 pts.] Use Stokes's Theorem to evaluate

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d s=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d s
$$

for the vector $\vec{F}=x \vec{i}-y \vec{j}$, where S is the hemisphere $x^{2}+y^{2}+z^{2}=9, z \leq 0$. Use an outward normal.
$\mathbf{3}$ [25 pts.] Let S be the closed surface of the solid cylinder T bounded by the planes $z=0$ and $z=2$ and the cylinder
$x^{2}+y^{2}=9$. Calculate the surface integral

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

where

$$
\vec{F}=\left(x^{2}+y^{2}+z^{2}\right)(x \vec{i}+y \vec{j}+z \vec{k})
$$

4 [20 pts.] If

$$
A=\left[\begin{array}{ccc}
2 & 7 & 1 \\
1 & 4 & -1 \\
1 & 3 & 1
\end{array}\right]
$$

Find A^{-1}.

Table of Integrals

$$
\begin{array}{|l|}
\hline \int \sin ^{2} x d x=-\frac{1}{2} \cos x \sin x+\frac{1}{2} x+C \\
\hline \int \cos ^{2} x d x=\frac{1}{2} \cos x \sin x+\frac{1}{2} x+C \\
\hline \int \sin ^{3} x d x=-\frac{1}{3} \sin ^{2} x \cos x-\frac{2}{3} \cos x+C \\
\hline \int \cos ^{3} x d x=\frac{1}{3} \cos ^{2} x \sin x+\frac{2}{3} \sin x+C \\
\hline \int t e^{t} d t=e^{t}(t-1)+C \\
\hline \int t^{2} e^{t} d t=e^{t}\left(t^{2}-2 t+2\right)+C \\
\hline
\end{array}
$$

