Ma 227	Final Exam Solutions
Name:	ID:
Lecture Section	

Directions: Answer all questions. The point value of each problem is indicated. If you need more work space, continue the problem you are doing on the **other side of the page it is on**. You may *not* use a calculator on this exam.

5/9/02

Score on Problem #1 _____

#2 _____

I pledge my honor that I have abided by the Stevens Honor System.

#3 _____

#4 _____

#5 _____

#6 _____

#7 _____

#8 _____

Total _____

Problem 1

a) (10 points)

Calculate the iterated integral

$$\int_{-1}^{1} \int_{v^2}^{1} \int_{0}^{1-x} dz dx dy$$

Be sure to show all steps.

Solution:

$$\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} dz dx dy = \int_{-1}^{1} \int_{y^{2}}^{1} (1-x) dx dy$$

$$= -\frac{1}{2} \int_{-1}^{1} (1-x)^{2} \Big|_{y^{2}}^{1} dy$$

$$= \frac{1}{2} \int_{-1}^{1} (1-y^{2})^{2} dy$$

$$= \frac{1}{2} \int_{-1}^{1} (1-2y^{2}+y^{4}) dy$$

$$= \frac{1}{2} \left(y - 2\frac{y^{3}}{3} + \frac{y^{5}}{5} \right) \Big|_{-1}^{1}$$

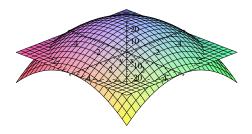
$$= \frac{1}{2} \left(1 - \frac{2}{3} + \frac{1}{5} + 1 - \frac{2}{3} + \frac{1}{5} \right) = \frac{8}{15}$$

b) (10 points)

Find the volume of the region R bounded below by the the x, y -plane and above by $z = 25 - x^2 - y^2$. Sketch R.

Solution:

The region is shown in the diagram



The paraboloid intersects the x, y –plane in the circle $x^2 + y^2 = 25$. Thus

$$V = \int_{-5}^{5} \int_{-\sqrt{25-x^2}}^{\sqrt{25-x^2}} \left(25 - x^2 - y^2\right) dy dx$$

$$= \int_{0}^{2\pi} \int_{0}^{5} \left(25 - r^2\right) r dr d\theta$$

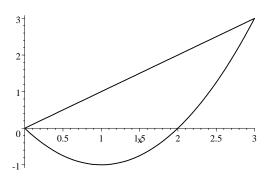
$$= \int_{0}^{2\pi} \left(\frac{25r^2}{2} - \frac{r^4}{4}\right) \Big|_{0}^{5} d\theta = (2\pi)(625) \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{625\pi}{2}$$

c) (10 points)

Give two integral expressions for the area of the region R bounded by y = x and $y = x^2 - 2x$. Sketch the region *R*. Do **not** evaluate the integrals.

Solution: The curves intersect when $x^2 - 2x = x$, that is, at (0,0) and (3,3).

The region is shown below.



Thus

$$\int_0^3 \int_{x^2 - 2x}^x dy dx$$

or since $y = x^2 - 2x$ implies that $y + 1 = (x - 1)^2$ so that $x = 1 \pm \sqrt{y + 1}$ $\int_{-1}^{0} \int_{1 - \sqrt{y + 1}}^{1 + \sqrt{y + 1}} dx dy + \int_{0}^{3} \int_{y}^{1 + \sqrt{y + 1}} dx dy$

$$\int_{-1}^{0} \int_{1-\sqrt{y+1}}^{1+\sqrt{y+1}} dx dy + \int_{0}^{3} \int_{y}^{1+\sqrt{y+1}} dx dy$$

Problem 2

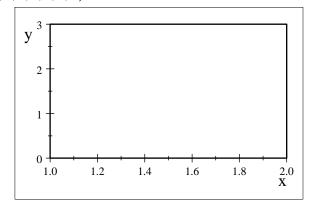
a) (10 points)

Verify Green's theorem when $\vec{F} = xy\vec{i} - 2xy\vec{j}$ and C is the boundary of the rectangle $1 \le x \le 2$, $0 \le y \le 3$.

Solution: We must show that

$$\oint_C xydx - 2xydy = \iint_{\text{rectangle}} \left(\frac{\partial (-2xy)}{\partial x} - \frac{\partial (xy)}{\partial y} \right) dA$$

The rectangle is (1,0,2,0,2,3,1,3,1,0)



Thus

$$\iint_{\text{rectangle}} \left(\frac{\partial (-2xy)}{\partial x} - \frac{\partial (xy)}{\partial y} \right) dA = \int_{0}^{3} \int_{1}^{2} (-2y - x) dx dy = -\frac{27}{2}$$

$$\oint_{C} xy dx - 2xy dy = \int_{1}^{2} 0 dx + \int_{0}^{3} -2(2)y dy + \int_{2}^{1} 3x dx + \int_{3}^{0} -2(1)y dy = -\frac{27}{2}$$

b) (15 points)

Verify Stokes' Theorem is true for the vector field

$$\vec{F}(x,y,z) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$

and S is the part of the paraboloid $z = 1 - x^2 - y^2$ that lies above the x, y -plane and S has upward orientation. Sketch S.

We must show

$$\iint_{S} curl \vec{F} \cdot \vec{n} ds = \oint_{\partial S} \vec{F} \cdot d\vec{r}$$

$$curl\vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & y^2 & z^2 \end{vmatrix} = \nabla \times (x^2, y^2, z^2) = (0, 0, 0)$$

Thus

$$\iint_{S} curl \vec{F} \cdot \vec{n} ds = 0$$

For the line integral we parametrize the boundary of S, namely the circle $x^2 + y^2 = 1$ in the x, y -plane, as

$$x = \cos t, \ y = \sin t, \ z = 0 \ 0 \le t \le 2\pi$$

SO

$$\vec{r}(t) = \cos t\vec{i} + \sin t\vec{j} + 0\vec{k}$$

$$\vec{r}'(t) = -\sin t\vec{i} + \cos t\vec{j}$$

$$\vec{F}(t) = \cos^2 t\vec{i} + \sin^2 t\vec{i} + 0\vec{k}$$

$$\oint_{\partial S} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \left(-\cos^2 t \sin t + \sin^2 t \cos t \right) dt$$
$$= \left[\frac{\cos^3 t}{3} + \frac{\sin^3 t}{3} \right]_{0}^{2\pi} = 0$$

Problem 3

a) (15 points)

Find the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{array} \right]$$

Note: $r^3 - 6r^2 + 11r - 6 = (r - 3)(r^2 - 3r + 2)$

Solution: This is example 2 on page 559 of the text.

$$\det \begin{bmatrix} 1-r & 2 & -1 \\ 1 & -r & 1 \\ 4 & -4 & 5-r \end{bmatrix} = -11r + 6r^2 + 6 - r^3 = -(r-1)(r-2)(r-3)$$

Thus the eigenvalues are r = 1, 2, 3. The system of equations for the eigenvectors is

$$(1-r)x_1 + 2x_2 - x_3 = 0$$
$$x_1 - rx_2 + x_3 = 0$$
$$4x_1 - 4x_2 + (5-r)x_3 = 0$$

For r = 1 we have

$$2x_2 = x_3$$
$$x_1 - x_2 + x_3 = 0$$
$$4x_1 - 4x_2 + 4x_3 = 0$$

Thus $x_1 = x_2 - x_3 = -x_2$. Hence the eigenvector corresponding to r = 1 is $\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$. Similarly the other eigenvectors are $\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$, $\left\{ \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} \right\} \leftrightarrow 2$, $\left\{ \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} \right\} \leftrightarrow 3$.

b) (**15 points**)

Solve the initial value problem

$$x'(t) = Ax(t) x(0) = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

where *A* is the matrix above.

Solution: This is example 4 on page 563 of the text.

Since the eigenvalues are distinct, then the general solution of the homogeneous DE is

$$x(t) = c_1 e^t \begin{bmatrix} -1\\1\\2 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} -2\\1\\4 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} -1\\1\\4 \end{bmatrix}$$
$$x(t) = \begin{bmatrix} -c_1 e^t - 2c_2 e^{2t} - c_3 e^{3t}\\c_1 e^t + c_2 e^{2t} + c_3 e^{3t}\\2c_1 e^t + 4c_2 e^{2t} + 4c_3 e^{3t} \end{bmatrix}$$

Thus

$$x(0) = \begin{bmatrix} -c_1 - 2c_2 - c_3 \\ c_1 + c_2 + c_3 \\ 2c_1 + 4c_2 + 4c_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & -1 & -1 \\ 1 & 1 & 1 & 0 \\ 2 & 4 & 4 & 0 \end{bmatrix}, \text{ row echelon form: } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \text{ so } c_1 = 0, c_2 = 1, c_3 = -1 \text{ and }$$

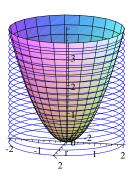
$$x(t) = e^{2t} \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} - e^{3t} \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$$

Problem 4

a) (10 points)

Give an expression for the volume of the region enclosed by the cylinder $x^2 + y^2 = 4$, bounded above by the paraboloid $z = x^2 + y^2$ and bounded below by the x, y -plane. Sketch the region. Do *not* evaluate the expression.

Solution:



We use cylindrical coordinates. Now z goes from the x, y -plane, that is, 0 to the paraboloid which is $z = r^2$. The region of integration in the x, y -plane is the the circle $x^2 + y^2 \le 4$, that is $0 \le r \le 2$, $0 \le \theta \le 2\pi$. Hence the volume is given by

$$\int_0^{2\pi} \int_0^2 \int_0^{r^2} dz r dr d\theta$$

b) (12 points)

Solve, if possible, the system of equations

$$x_1 + 2x_2 - 2x_3 + 3x_4 - 4x_5 = -3$$
$$2x_1 + 4x_2 - 5x_3 + 6x_4 - 5x_5 = -1$$
$$-x_1 - 2x_2 - 3x_4 + 11x_5 = 15$$

Solution:
$$\begin{bmatrix} 1 & 2 & -2 & 3 & -4 & -3 \\ 2 & 4 & -5 & 6 & -5 & -1 \\ -1 & -2 & 0 & -3 & 11 & 15 \end{bmatrix}, \text{ row echelon form: } \begin{bmatrix} 1 & 2 & 0 & 3 & 0 & 7 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

so a solution does exist and $x_5 = 2$, $x_3 = 1$, and $x_1 = 7 - 2x_2 - 3x_4$, where x_2 and x_4 are arbitrary.

Problem 5

a) (13 points)

Evaluate $\iint_{S} \vec{F} \cdot \vec{n} ds$, where

$$\vec{F}(x, y, z) = x^3 \vec{i} + 2xz^2 \vec{j} + 3y^2 z \vec{k}$$

and S is the positively oriented surface of the solid bounded by the $z = 4 - x^2 - y^2$ and the x, y -plane, and \vec{n} is the outward directed unit normal to S. (Hint: you might want to consider using a theorem.) Solution: Use the Divergence Theorem. Then

$$\iint_{S} \vec{F} \cdot \vec{n} ds = \iiint_{V} div \vec{F} dv$$

$$div \vec{F} = 3\left(x^{2} + y^{2}\right)$$

$$\iiint_{V} div \vec{F} dv = \iiint_{V} 3\left(x^{2} + y^{2}\right) dV = 3\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} (r^{2}) r dz dr d\theta$$

$$= 3\int_{0}^{2\pi} \int_{0}^{2} (4 - r^{2}) r^{3} dr d\theta = 3\int_{0}^{2\pi} \left(r^{4} - \frac{r^{6}}{6}\right) \Big|_{0}^{2} d\theta = 3(2\pi) \left(16 - \frac{32}{3}\right) = 32\pi$$

b)

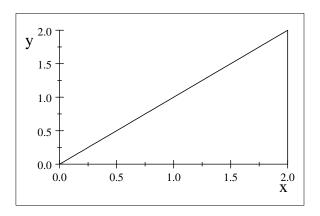
Consider

$$\int_0^2 \int_y^2 f(x,y) dx dy.$$

(5 points)

(a) Sketch the region of integration.

y



(5 points)

(b) Write the integral reversing the order of integration.

$$\int_{0}^{2} \int_{0}^{x} f(x, y) dy dx$$

(7 points)

(c) Rewrite the integral in terms of polar coordinates.

Solution: The limits on θ are clear from the sketch. Noting that the polar equation of the line x = 2 is $r\cos\theta = 2$ or $r = 2\sec\theta$, we have

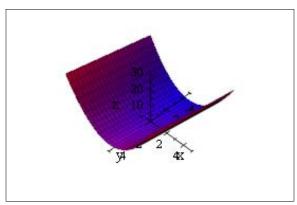
$$\int_0^{\pi/4} \int_0^{2\sec\theta} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

Problem 6

a) (12 points)

Find the surface area of the part of the surface $z = x + y^2$ that lies above the triangle with vertices (0,0),(1,1), and (0,1).

Solution: The surface projects uniquely onto the region in the x, y -plane as the diagram shows. $x + y^2$



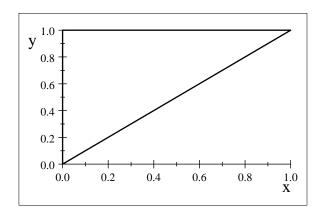
Thus we may use the formula

Surface area =
$$\iint_{S} \sqrt{1 + (f_x)^2 + (f_y)^2} dA$$

where S is given by z = f(x, y). Here $f_x = 1$ and $f_y = 2y$ so

Surface area =
$$\iint_{R} \sqrt{1 + 1 + 4y^2} \, dA$$

where R is the triangle (0,0,1,1,0,1,0,0)



Thus

Surface area =
$$\int_0^1 \int_0^y \sqrt{1 + 1 + 4y^2} \, dx \, dy = \int_0^1 \int_x^1 \sqrt{2 + 4y^2} \, dy \, dx$$

We use the first expression to find the surface area since this integral can be evaluated.

Surface area =
$$\int_{0}^{1} \int_{0}^{y} \sqrt{2 + 4y^{2}} \, dx dy = \int_{0}^{1} y \sqrt{2 + 4y^{2}} \, dy = \frac{\left(2 + 4y^{2}\right)^{\frac{3}{2}}}{\frac{3}{2}(8)} \bigg|_{0}^{1} = \frac{1}{12} \left(6^{\frac{3}{2}} - 2^{\frac{3}{2}}\right)$$

b) (13 points)

If

$$\vec{F}(x,y,z) = (2xy^3 + z^2)\vec{i} + (3x^2y^2 + 2yz)\vec{j} + (y^2 + 2xz)\vec{k}$$

find a function f such that $\nabla f = \vec{F}$.

Solution: Check that such an f exists (not required by problem)

$$\nabla \times (2xy^3 + z^2, 3x^2y^2 + 2yz, y^2 + 2xz) = (0, 0, 0)$$
$$f_x = 2xy^3 + z^2$$

so

$$f = x^2y^3 + xz^2 + h(y, z)$$

Then

$$f_{y} = 3x^{2}y^{2} + h_{y} = 3x^{2}y^{2} + 2yz$$

Therefore

$$h(y,z) = y^2z + g(z)$$

and

$$f = x^2y^3 + xz^2 + y^2z + g(z)$$

Then

$$f_z = 2xz + y^2 + g'(z) = y^2 + 2xz$$

so g(z) = K, a constant. Thus

$$f = x^2y^3 + xz^2 + y^2z + K$$

Problem 7

a) (10 points)

Let A be a constant matrix and r an eigenvalue of A with corresponding eigenvector u. Show that $x(t) = t^r u$ is a solution of the system

$$tx'(t) = Ax(t)$$

Solution: We have that

$$Au = ru$$

Since $x(t) = t^r u$, then

$$tx'(t) = t(rt^{r-1}u) = t^r(ru) = t^rAu = A(t^ru) = Ax(t)$$

b) (15 points)

Solve the system

$$tx'(t) = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix} x(t) \quad t > 0$$

$$\begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}, \text{ eigenvectors: } \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\} \leftrightarrow 2, \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \leftrightarrow 4$$
Solution: $\det \begin{bmatrix} 1-r & 3 \\ -1 & 5-r \end{bmatrix} = 8-6r+r^2 = (r-4)(r-2) \text{ so the eigenvalues are 2,4.}$

$$(1-r)x_1 + 3x_2 = 0$$
$$-x_1 + (5-r)x_2 = 0$$

r = 2

$$-x_1 + 3x_2 = 0$$

$$-x_1 + 3x_2 = 0$$

so $x_1 = 3x_2$ and the eigenvector is $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$. The other eigenvector is $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \leftrightarrow 4$. From part a)

the solution is

$$x(t) = c_1 t^2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + c_2 t^4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Problem 8

(20 points)

Find a particular solution of the system

$$x'(t) = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} x(t) + \begin{bmatrix} -t - 1 \\ -4t - 2 \end{bmatrix}$$

Solution: This is homework problem #2 on page 579.

$$A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}, \quad \overrightarrow{f}(t) = \begin{bmatrix} -t - 1 \\ -4t - 2 \end{bmatrix}.$$

 $\vec{f}(t)$ consists of polynomials of degree 1, our guess will be a vector consisting of polynomials of

degree 1: guess
$$\vec{x}_p(t) = \vec{a}t + \vec{b} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} t + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Now we plug in: $\vec{x}_p'(t) = A\vec{x}_p(t) + \vec{f}(t) \Rightarrow$

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} t + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \right) + \begin{bmatrix} -t - 1 \\ -4t - 2 \end{bmatrix}$$

Bring all of the variables to one side

$$\begin{bmatrix} t+1 \\ 4t+2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} t + \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Now equate coefficients:

$$t: \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
; we now a system of 2 equations in 2 unknowns; solve it any way you like. You should get $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Now take the constant term on both sides:

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \text{ another system of 2 equations in 2 unknowns.}$$

$$\Rightarrow \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}. \text{ So we have } \vec{x}_p(t) = \vec{a}t + \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} t + \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} t \\ 2 \end{bmatrix}.$$