Ma 227	Final Exam Solutions	5/8/03
Name:	ID:	
Lecture Section:		
I pledge my honor that I have abided by	the Stevens Honor System.	
	s. The point value of each problem is indicated. If y are doing on the other side of the page it is on . You	
Score on Problem #1		
#2		
#2 #3		
#3		
#3 #4		
#3 #4 #5		

Name:______ ID#:_____

Name:	ID#:

Problem 1

a) (10 points)

Calculate the iterated integral

$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dz dy dx$$

Be sure to show all steps.

Solution:

$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dz dx dy = \int_{0}^{1} \int_{0}^{1-x} (1-x-y) dy dx$$

$$= \int_{0}^{1} \left[(1-x)y - \frac{y^{2}}{2} \right]_{0}^{1-x} dx$$

$$= \frac{1}{2} \int_{0}^{1} (1-x)^{2} dx = -\frac{1}{6} \left[(1-x)^{3} \right]_{0}^{1} = \frac{1}{6}$$

b) (15 points)

Give an expression in cylindrical coordinates for the volume of the solid T bounded above by the plane z = y and below by the paraboloid $z = x^2 + y^2$. Sketch T. Do *not* evaluate this integral.

Solution: In polar coordinates the plane has the equation $z = r \sin \theta$ and the paraboloid has the equation $z = r^2$. The two surfaces intersect when $y = x^2 + y^2$, that is the circle $x^2 + y^2 - y = 0$ or $x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$. However, it is only the part of this circle that is in first and second quadrants that is the projection of the solid onto the x, y-plane, since the plane z = y goes through the x axis. The equation of this circle is $r = \sin \theta$

Volume =
$$\int_0^{\pi} \int_0^{\sin \theta} \int_{r^2}^{r \sin \theta} r dz dr d\theta$$

Problem 2

a) (10 points)

Give **two** triple integral expressions for the volume under the surface $z = x^2y$ and above the triangle in the x, y -plane with vertices (1,0), (2,1), (4,0). Sketch the triangle in the x, y -plane. Do *not* evaluate the expression.

Solution: (1,0,2,1,4,0,1,0)

The line joining (1,0) and (2,1) has equation y = x - 1 and the line joining (2,1) to (4,0) has equation 2y = 4 - x. Thus

Volume =
$$\int_{0}^{1} \int_{y+1}^{4-2y} \int_{0}^{x^{2}y} dz dx dy$$
$$= \int_{1}^{2} \int_{0}^{x-1} \int_{0}^{x^{2}y} dz dy dx + \int_{2}^{4} \int_{0}^{\frac{4-x}{2}} \int_{0}^{x^{2}y} dz dy dx$$

b) (10 points)

Calculate the surface integral $\iint_{S} \vec{F} \cdot \vec{n} ds$, where

$$\vec{F}(x,y,z) = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$$

and S is the closed surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 2.

Solution: We can use the Divergence Theorem, since *S* is a closed surface.

$$\nabla \cdot \vec{F} = 3(x^2 + y^2 + z^2)$$

so

Name:_____ ID#:____

$$\iint_{S} \vec{F} \cdot \vec{n} ds = \iiint_{V} \nabla \cdot \vec{F} dV$$

$$= \iiint_{V} 3(x^{2} + y^{2} + z^{2}) dV$$

$$= 3 \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{2} (r^{2} + z^{2}) r dz dr d\theta$$

$$= 3 \int_{0}^{2\pi} \int_{0}^{1} \left[r^{3}z + r \frac{z^{3}}{3} \right]_{0}^{2} dr d\theta$$

$$= 3 \int_{0}^{2\pi} \left[2 \frac{r^{4}}{4} + \frac{8}{3} \left(\frac{r^{2}}{2} \right) \right]_{0}^{1} d\theta$$

$$= 3 \left[\frac{1}{2} + \frac{4}{3} \right] (2\pi) = 11\pi$$

Problem 3

a) (15 points)

Find the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

Solution:

$$\begin{vmatrix} 2-r & 1 & 0 \\ 0 & 3-r & 1 \\ 0 & 0 & 1-r \end{vmatrix} = (2-r)(3-r)(1-r)$$

so the eigenvalues are r = 1, 2, 3. The system of equations that determines the eigenvectors is

$$(2-r)x_1 + x_2 = 0$$
$$(3-r)x_2 + x_3 = 0$$

$$(1-r)x_3=0$$

For r = 1, we have x_3 is arbitrary, and

$$x_1 + x_2 = 0$$
$$2x_2 + x_3 = 0$$

Thus $x_2 = -\frac{1}{2}x_3$ and $x_1 = -x_2 = \frac{1}{2}x_3$. Thus we have the eigenvector $\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix} \leftrightarrow 1$. For r = 2, the

system implies, $x_3 = 0, x_2 = 0, x_1$ is arbitrary. Thus $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \leftrightarrow 2$. For r = 3 the system implies

$$x_3 = 0, x_2$$
 is arbitrary, and $x_1 = x_2$. Thus $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

b) (10 points)

Solve the initial value problem

$$x'(t) = Ax(t) x(0) = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

where *A* is the matrix above.

Solution: The general solution to the homogeneous system is

$$x(t) = c_1 e^t \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Then

$$x(0) = c_1 \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2}c_1 + c_2 + c_3 \\ -\frac{1}{2}c_1 + c_3 \\ c_1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

Thus $c_1 = 0, c_3 = 0, c_2 = -1$. The solution is

$$x(t) = -e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Problem 4

a) (15 points)

Verify Green's theorem is true for the line integral

$$\oint_C xy^2 dx - x^2 y dy$$

where C consists of the parabola $y = x^2$ from (-1,1) to (1,1) and the line segment from (1,1) to (-1,1). Sketch C.

Solution:

 x^2

Let C_1 be the parabola and C_2 the line. Then $C_1: r(t) = t\vec{i} + t^2\vec{j}$ $-1 \le t \le 1$ and $C_2: r(t) = -t\vec{i} + \vec{j}$ $-1 \le t \le 1$. Thus

$$\oint_C xy^2 dx - x^2 y dy = \int_{-1}^1 \left(t \cdot t^4 - t^2 \cdot t^2 \cdot (2t) \right) dt + \int_{-1}^1 -t(-dt)$$

$$= \left[-\frac{t^6}{6} + \frac{t^2}{2} \right]_{-1}^1 = 0$$

Using Green's Theorem we have

$$\oint_C xy^2 dx - x^2 y dy = \iint_R \left[\frac{\partial (-x^2 y)}{\partial x} - \frac{\partial (xy^2)}{\partial y} \right] dA$$

$$= \iint_R (-2xy - 2xy) dA$$

$$= \int_{-1}^1 \int_{x^2}^1 (-4xy) dy dx$$

$$= \int_{-1}^1 \left[-2xy^2 \right]_{x^2}^1 dx = \int_{-1}^1 (-2x + 2x^5) dx$$

$$= \left[-x^2 + \frac{x^6}{3} \right]_{-1}^1 = 0$$

b) (10 points)

Put the matrix

$$\begin{bmatrix}
3 & 1 & 9 & -2 \\
3 & 2 & 12 & 1 \\
2 & 1 & 7 & -1
\end{bmatrix}$$

in row reduced echelon form.

Solution:
$$\begin{bmatrix} 3 & 1 & 9 & -2 \\ 3 & 2 & 12 & 1 \\ 2 & 1 & 7 & -1 \end{bmatrix} \rightarrow {R_1 - R_3} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 3 & 2 & 12 & 1 \\ 2 & 1 & 7 & -1 \end{bmatrix} \rightarrow {-3R_1 + R_2 - 2R_1 + R_3} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 2 & 6 & 4 \\ 0 & 1 & 3 & 1 \end{bmatrix}$$
$$\rightarrow {R_3 \leftrightarrow R_2} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & 4 \end{bmatrix} \rightarrow {-2R_2 + R_3} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
$$\rightarrow {\frac{1}{2}R_3} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow {R_3 + R_2 - 2R_2 + R_3} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 5

a) (10 points)

Let

$$\vec{F}(x,y,z) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$

Calculate

$$\nabla \times \vec{F} = curl \vec{F}$$

Solution:
$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & y^2 & z^2 \end{vmatrix} = \vec{i}(0-0) + \vec{j}(0-0) + \vec{k}(0-0) = 0$$

b) (15 points)

Verify that Stokes' Theorem is true for the vector field in part a) where S is the part of the paraboloid $z = 1 - x^2 - y^2$ that lies above the x, y -plane, and S has up orientation.

Solution: Since $\nabla \times \vec{F} = 0$ from part a)

$$\iint\limits_{S} \left(\nabla \times \vec{F} \right) \cdot \vec{n} dS = 0$$

The bottom of the paraboloid in the x, y -plane is the circle $x^2 + y^2 = 1$. We let $C: x(t) = \cos t, y(t) = \sin t, z = 0$ so

$$r(t) = \cos t \vec{i} + \sin t \vec{j} + 0 \vec{k}, \quad 0 \le t \le 2\pi$$

$$r'(t) = -\sin t \vec{i} + \cos t \vec{j}$$

$$\vec{F}(t) = \cos^2 t \vec{i} + \sin^2 t \vec{j} + 0 \vec{k}$$

Then

$$\oint_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \left(-\sin t \cos^2 t + \cos t \sin^2 t \right) dt$$
$$= \frac{1}{3} \left[\cos^3 t + \sin^3 t \right]_0^{2\pi} = 0$$

Name:	ID#:

Problem 6

a) (15 points)

If

$$\vec{F}(x,y,z) = (20x^3z + 2y^2)\vec{i} + 4xy\vec{j} + (5x^4 + 3z^2)\vec{k}$$

find a function f such that $\nabla f = \vec{F}$.

$$f_y = 4xy$$

SO

$$f = 2xy^2 + g(x, z)$$

Then

$$f_z = g_z = 5x^4 + 3z^2$$

so

$$g(x,z) = 5x^4z + z^3 + h(x)$$

Now we have

$$f = 2xy^2 + 5x^4z + z^3 + h(x)$$

$$f_x = 2y^2 + 20x^3z + h'(x) = 20x^3z + 2y^2$$

Hence h'(x) = 0 and h(x) = K. Finally,

$$f(x, y, z) = 2xy^2 + 5x^4z + z^3 + K$$

b) (10 points)

Evaluate

$$\int_C \vec{F} \cdot d\vec{r}$$

where \vec{F} is the vector field in part a) and \vec{C} is the curve given by the vector equation

$$\vec{r}(t) = (1+t^2)\vec{i} + (1+2t^5)\vec{j} + (1+3t^6)\vec{k}$$
 $0 \le t \le 1$

Solution: Since there exists a function f(x, y, z) such that $\nabla f = \vec{F}$, the line integral is independent of path. The curve C begins at (1, 1, 1) and ends at (2, 3, 4). Therefore

$$\int_{C} \vec{F} \cdot d\vec{r} = f(2,3,4) - f(1,1,1)$$

f(2,3,4) = 420 + K and f(1,1,1) = 8 + K. Thus

$$\int_{C} \vec{F} \cdot d\vec{r} = f(2,3,4) - f(1,1,1) = 412$$

Problem 7

a) (10 points)

Let A be a constant matrix and r an eigenvalue of A with corresponding eigenvector u. Show that $x(t) = t^r u$ is a solution of the system

$$tx'(t) = Ax(t)$$

Name:		

ID#:_____

Solution: We have that

$$Au = ru$$

Since $x(t) = t^r u$, then

$$tx'(t) = t(rt^{r-1}u) = t^r(ru) = t^rAu = A(t^ru) = Ax(t)$$

b) (15 points)

Solve the system

$$tx'(t) = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix} x(t) \quad t > 0$$

Solution: det $\begin{bmatrix} 1-r & 3 \\ -1 & 5-r \end{bmatrix} = 8-6r+r^2 = (r-4)(r-2)$ so the eigenvalues are 2,4.

$$(1-r)x_1 + 3x_2 = 0$$
$$-x_1 + (5-r)x_2 = 0$$

r = 2

$$-x_1 + 3x_2 = 0$$

$$-x_1 + 3x_2 = 0$$

so $x_1 = 3x_2$ and the eigenvector is $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$. The other eigenvector is $\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\} \leftrightarrow 4$. From part a)

the solution is

$$x(t) = c_1 t^2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + c_2 t^4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Problem 8

a) (15 points)

Evaluate the

$$\iint_{B} \sin \theta dA$$

where R is the region in the **first** quadrant that is outside the circle r = 2 and inside the cardioid $r = 2(1 + \cos \theta)$. Sketch R and shade it.

Solution:

2

Name:______ ID#:___

$$\iint_{R} \sin \theta dA = \int_{0}^{\frac{\pi}{2}} \int_{2}^{2(1+\cos\theta)} \sin \theta r dr d\theta = \int_{0}^{\frac{\pi}{2}} \left[\frac{1}{2} r^{2} \right]_{2}^{2(1+\cos\theta)} \sin \theta d\theta$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \left[(1+\cos\theta)^{2} \sin\theta - \sin\theta \right] d\theta = 2 \left[-\frac{(1+\cos\theta)^{3}}{3} + \cos\theta \right]_{0}^{\frac{\pi}{2}}$$

$$= 2 \left[-\frac{1}{3} + \left(\frac{8}{3} \right) - 1 \right] = \frac{8}{3}$$

b) (**10** points)

Give **two** iterated integrals for the area of the region R in the first quadrant that lies above the hyperbola xy = 1 and the line y = x and below the line y = 2. Sketch R and shade it. Do **not** evaluate these integrals.

Solution: The hyperbola and the line y = x intersect when $x^2 = 1$, that is at x = 1 in the first quadrant. Thus at (1,1). The line y = 2 intersects the hyperbola at $x = \frac{1}{2}$, that is at $\left(\frac{1}{2}, 2\right)$. The line y = x intersects the line y = 2 at (2,2).

Name:______ ID#:_

Area =
$$\iint_{R} dA$$
=
$$\int_{1}^{2} \int_{\frac{1}{y}}^{y} dx dy$$
=
$$\int_{\frac{1}{2}}^{1} \int_{\frac{1}{x}}^{2} dy dx + \int_{1}^{2} \int_{x}^{2} dy dx$$