Ma 227	Final Exam Solutions	5/15/06
Name:		
Lecture Section:		
I pledge my honor that I have abided by the St	tevens Honor System.	
shown to obtain full credit. Credit v you finish, be sure to sign the pledge Directions: Answer all questions. Th	ne point value of each problem is indicated. If you doing on the other side of the page it is on .	orted. When
Score on Problem #1		
#2		
#3		
#4		
#5		
#6		
#7		
#8		

Total

a) (16 points)

Compute the divergence and curl of the vector field

$$\vec{F}(x,y,z) = (y^2 + ze^{xz})\vec{i} + 2xy\vec{j} + xe^{xz}\vec{k}$$

Solution:

$$\nabla \cdot \vec{F} = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot \left((y^2 + ze^{xz}) \vec{i} + 2xy \vec{j} + xe^{xz} \vec{k} \right) = z^2 e^{xz} + 2x + x^2 e^{xz}$$

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + ze^{xz} & 2xy & xe^{xz} \end{vmatrix}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + ze^{xz} & 2xy & xe^{xz} \end{vmatrix}$$

$$= \left(\frac{\partial(xe^{xz})}{\partial y} - \frac{\partial 2xy}{\partial z} \right) \vec{i} + \left(\frac{\partial(y^2 + ze^{xz})}{\partial z} - \frac{\partial(xe^{xz})}{\partial x} \right) \vec{j} + \left(\frac{\partial(2xy)}{\partial x} - \frac{\partial(y^2 + ze^{xz})}{\partial y} \right) \vec{k}$$

$$= 0 \vec{i} + (e^{xz} + xze^{xz} - e^{xz} - xze^{xz}) \vec{i} + (2y - 2y) \vec{k} = 0$$

b) (9 points)

Does there exist a function $\phi(x,y,z)$ such that $\nabla \phi = \vec{F}$ where \vec{F} is the vector field in 1a above. Why or why not? If yes, then find $\phi(x,y,z)$

Solution: Since $\operatorname{curl} \vec{F} = 0$, \vec{F} is a conservative force field and such a $\phi(x, y, z)$ does exist.

$$\phi_x = y^2 + ze^{xz}$$

so

$$\phi = xy^2 + e^{xz} + g(y, z)$$

so

$$\phi_y = 2xy + g_y = 2xy$$

Thus g(y.z) = h(z) and

$$\phi = xy^2 + e^{xz} + h(z)$$

Then

$$\phi_z = xe^{xz} + h'(z) = xe^{xz}$$

so h(z) = C, a constant. Thus

$$\phi = xy^2 + e^{xz} + C$$

Problem 2

a) (12 points)

Give an expression in ploar coordinates for

$$\iint\limits_{S} f(x,y,z)dS$$

where S is surface of the paraboloid $z = 4 - x^2 - y^2$ above the x, y -plane and $f(x, y, z) = x^2 + 2y^2 + z^2 - 4$. Sketch S. Do not evaluate the expression. Solution: $z = 4 - x^2 - y^2$

Since the surface projects uniquely onto the x, y –plane and projects onto the x, y –plane in the circle $x^2 + y^2 \le 4$, then

$$\iint_{S} f(x,y,z)dS = \iint_{S} (x^{2} + y^{2} + z^{2} - 4) \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dS$$

$$= \iint_{x^{2} + y^{2} \le 4} (x^{2} + 2y^{2} + (4 - x^{2} - y^{2})^{2} - 4) \sqrt{1 + (-2x)^{2} + (-2y)^{2}} dA$$

$$= \iint_{x^{2} + y^{2} \le 4} (x^{2} + 2y^{2} + (4 - x^{2} - y^{2})^{2} - 4) \sqrt{1 + 4x^{2} + 4y^{2}} dA$$

$$= \iint_{x^{2} + y^{2} \le 4} (x^{4} + 2x^{2}y^{2} - 7x^{2} + y^{4} - 6y^{2} + 12) \sqrt{1 + 4x^{2} + 4y^{2}} dA$$

$$= \iint_{x^{2} + y^{2} \le 4} (x^{4} + 2x^{2}y^{2} - 7x^{2} + y^{4} - 6y^{2} + 12) \sqrt{1 + 4x^{2} + 4y^{2}} dA$$

$$= \int_{0}^{2\pi} \int_{0}^{2} (r^{4} \cos^{4}\theta + 2r^{4} \sin^{2}\theta \cos^{2}\theta - 7r^{2} \cos^{2}\theta + r^{4} \sin^{4}\theta - 6r^{2} \sin^{2}\theta + 12) r \sqrt{1 + 4r^{2}} dr d\theta$$

Use Stokes' Theorem to evaluate $\iint_S (\nabla \times \vec{F}) \cdot \vec{n} dS$ where $\vec{F}(x,y,z) = y\vec{i} + y\vec{j} + z\vec{k}$ and S is the surface defined by $S = \left\{z = \left(x^2 + y^2\right)^{\frac{1}{3}}, \ 0 \le z \le 2\right\}$ Assume that S is oriented upwards. Solution:

$$\iint\limits_{S} \left(\nabla \times \vec{F} \right) \cdot \vec{n} dS = \oint\limits_{C} \vec{F} \cdot d\vec{r}$$

where C is the boundary of the surface S. Below is the surface.

The boundary of the surface is $(x^2 + y^2)^{\frac{1}{3}} = 2$ which is the circle $x^2 + y^2 = 8$, z = 2. We parametrize this as

$$\vec{r}(t) = \sqrt{8} \cos t \vec{i} + \sqrt{8} \sin t \vec{j} + 2\vec{k}, \quad 0 \le t \le 2\pi$$

Then

$$\vec{r}'(t) = -\sqrt{8} \sin t \vec{i} + \sqrt{8} \cos t \vec{j}$$

$$\vec{F}(t) = \sqrt{8} \sin t \vec{i} + \sqrt{8} \sin t \vec{j} = 2\vec{k}$$

so

$$\iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} dS = \oint_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} (-8\sin^{2}t + 8\sin t \cos t) dt$$
$$= \left[4\cos t \sin t - 4t + 4\sin^{2}t \right]_{0}^{2\pi} = -8\pi$$

Problem 3

a) (12 points)

Reverse the order of integration:

$$\int_{-1}^{2} \int_{y^2 - 3}^{y - 1} (x^2 + xy) dx dy$$

Be sure to sketch the region of integration. Do *not* evaluate.

Solution: The region of integration looks like:

$$x = y^2 - 3$$

If we equate
$$y-1 = y^2 - 3$$
, then,

$$\Rightarrow y^2 - y - 2 = 0$$

$$\Rightarrow (y-2)(y+1) = 0$$

$$\Rightarrow$$
 $y = -1$ and $y = 2$.

If
$$y = -1$$
, $x = -2$ and if $y = 2$, $x = 1$.

We need to split to two double integrals. The final solution is:

$$\int_{-3}^{-2} \int_{-\sqrt{x+3}}^{\sqrt{x+3}} (x^2 + xy) dy dx + \int_{-2}^{1} \int_{x+1}^{\sqrt{x+3}} (x^2 + xy) dy dx$$

b) (13 points)

Set up a triple integral in spherical coordinates to find the volume of the solid bounded above by the sphere $x^2 + y^2 + z^2 = 25$ and below by the plane z = 4. Do *not* evaluate

Solution: The region of integration is shown below.

$$x^2 + y^2 + z^2 = 25$$

 ρ will go from the plane z = 4 to the sphere $x^2 + y^2 + z^2 = 25$.

In spherical, $x^2 + y^2 + z^2 = 25 \Rightarrow \rho = 5$

Also, $z = 4 \Rightarrow \rho \cos \phi = 4 \Rightarrow \rho = 4 \sec \phi$.

So, $4 \sec \phi \le \rho \le 5$.

For ϕ , we can form a right triangle with hypotenuse 5 (the radius of the sphere) and vertical side 4 which is the distance from the origin to z = 4. So the horizontal side is 3.

Therefore, $\tan \phi = \frac{3}{4} \Rightarrow \phi = \arctan(\frac{3}{4}).$

So, $0 \le \phi \le \arctan(\frac{3}{4})$.

The volume is:

$$V = \int_0^{2\pi} \int_0^{\arctan(\frac{3}{4})} \int_{4\sec\phi}^5 p^2 \sin\phi d\rho d\phi d\theta$$

Problem 4

a) (15 points)

Evaluate the line integral

$$\oint_C (xy + \ln(1 + x^2)) dx + xdy$$

where C is the triangle with vertices (0,0), (1,0), (1,2) oriented in a counterclockwise manner. Sketch C.

Solution: We use Green's Theorem

$$\oint_C Pdx + Qdy = \iint_R (Q_x - P_y)dA$$

(0,0,1,0,1,2,0,0)

 $P = xy + \ln(1 + x^2)$ and Q = x so that $P_y = x$ and $Q_x = 1$. The line joining (0,0) to (1,2) is y = 2x. Thus

$$\oint_C Pdx + Qdy = \iint_R (Q_x - P_y)dA = \iint_{Triangle} (1 - x)dA$$

$$= \int_0^2 \int_{\frac{y}{2}}^1 (1 - x)dxdy$$

$$= \int_0^1 \int_0^{2x} (1 - x)dydx = \frac{1}{3}$$

b) (10 points)

Find the inverse of the matrix

$$A = \left[\begin{array}{cc} 2 & 3 \\ 2 & 2 \end{array} \right].$$

Solution:

$$\begin{bmatrix} 2 & 3 & 1 & 0 \\ 2 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_2} \begin{bmatrix} 2 & 3 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix} \xrightarrow{3R_2 + R_1} \begin{bmatrix} 2 & 0 & -2 & 3 \\ 0 & -1 & -1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & -1 & -1 & 1 \end{bmatrix}$$

$$\xrightarrow{-R_2} \begin{bmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

Thus
$$A^{-1} = \begin{bmatrix} -1 & \frac{3}{2} \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 2 & 2 \end{bmatrix}, \text{ inverse: } \begin{bmatrix} -1 & \frac{3}{2} \\ 1 & -1 \end{bmatrix}$$

a) (13 points)

Evaluate the surface integral

$$\iint\limits_{S} \vec{F} \cdot \vec{n} dS$$

where

$$\vec{F} = \left(2x^2y\vec{i} + 6y^2z\vec{j} + 2xz\vec{k}\right)$$

and *S* is the surface bounded by the unit cube $S = \{0 \le x, y, z \le 1\}$. Solution:

$$\iint\limits_{S} \vec{F} \cdot \vec{n} dS = \iiint\limits_{V} \nabla \cdot \vec{F} dV$$

$$\nabla \cdot \vec{F} = 4xy + 12yz + 2x$$

so

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} \nabla \cdot \vec{F} dV = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (4xy + 12yz + 2x) dx dy dz$$
$$= \int_{0}^{1} \int_{0}^{1} (2y + 12yz + 1) dy dz = \int_{0}^{1} (1 + 6z + 1) dz = 2 + 3 = 5$$

b) (7 points)

Let

$$A = \left[\begin{array}{cc} 2 & 5 \\ 1 & -3 \end{array} \right]$$

Find the characteristic polynomial p(r) for A.

Solution:

$$\begin{vmatrix} 2-r & 5 \\ 1 & -3-r \end{vmatrix} = -(2-r)(3+r) - 5 = r^2 + r - 11$$

c) (5 points)

Show that p(A) = 0, where A is the matrix in 5b) and p(r) is the characteristic polynomial of A. Solution:

$$p(A) = \begin{bmatrix} 2 & 5 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & -3 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 1 & -3 \end{bmatrix} - 11 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 9 & -5 \\ -1 & 14 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 1 & -3 \end{bmatrix} + \begin{bmatrix} -11 & 0 \\ 0 & -11 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

a) (12 points)

Find the eigenvalues and eigenvectors of

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right]$$

Solution:

$$\det\begin{bmatrix} 1-r & 2 \\ 2 & 1-r \end{bmatrix} = (1-r)^2 - 4 = r^2 - 2r - 3 = (r-3)(r+1).$$
 Thus the eigenvalues are $r = 3, -1$.

The system of equations for the eigenvectors is

$$(1-r)x_1 + 2x_2 = 0$$

$$2x_1 + (1-r)x_2 = 0$$
Setting $r = 3$ leads to $x_1 = x_2$ so
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is an eigenvector.

Setting r = -1 leads to $x_1 = -x_2$ so $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector.

b) (13 points)

Solve the nonhomgeneous system of equations

$$x'(t) = Ax(t) + \begin{bmatrix} e^{2t} \\ 0 \end{bmatrix}$$

where A is the matrix above in 6a).

Soltuion:

$$y_h = c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Let

$$y_p = e^{2t} \begin{bmatrix} a \\ b \end{bmatrix}$$

Then the DE implies

$$e^{2t} \begin{bmatrix} 2a \\ 2b \end{bmatrix} = e^{2t} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + e^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

or

$$\begin{bmatrix} 2a \\ 2b \end{bmatrix} = \begin{bmatrix} a+2b+1 \\ 2a+b \end{bmatrix}$$

We therefore have the system

$$a - 2b = 1$$
$$-2a + b = 0$$

Hence $a = -\frac{1}{3}$, $b = -\frac{2}{3}$. Hence

$$y_p = e^{2t} \begin{bmatrix} -\frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}$$

and

$$y_g = y_h + y_g = c_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + e^{2t} \begin{bmatrix} -\frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}$$

Problem 7

a) (12 points)

Evaluate the integral

$$\int_0^2 \int_{\frac{y}{2}}^1 \sqrt{6 - x^2} \, dx dy$$

Sketch the region of integration.

Solution: The sketch of the region looks like the following:

$$y = 2x$$

We will need to reverse the order of integration to evaluate the integral.

$$\int_{0}^{1} \int_{0}^{2x} \sqrt{6 - x^{2}} \, dy dx$$

$$= \int_{0}^{1} 2x \sqrt{6 - x^{2}} \, dx$$

$$u = 6 - x^{2}, du = -2x dx$$

$$= \int_{0}^{1} -\sqrt{u} \, du = -\frac{2}{3} (6 - x^{2})^{\frac{3}{2}} \Big|_{0}^{1} = -\frac{2}{3} (5)^{\frac{3}{2}} + \frac{2}{3} (6)^{\frac{3}{2}}$$

b) (13 points)

Convert to Polar Coordinates and evaluate

$$\int_0^1 \int_0^{\sqrt{3}x} 3x dy dx$$

Sketch the region of integration.

Solution: The region of integration is a right triangle:

$$\sqrt{3} x$$

$$\sqrt{3} = 1.7321$$

In polar coordinates, r goes from 0 to the line x = 1.

$$x = 1 \Rightarrow r\cos\theta = 1 \Rightarrow r = \sec\theta.$$

From the triangle, $\cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$. This is the upper limit on θ .

Therefore,

$$\int_{0}^{1} \int_{0}^{\sqrt{3}x} 3x dy dx = \int_{0}^{\frac{\pi}{3}} \int_{0}^{\sec \theta} 3r \cos \theta r dr d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} r^{3} \cos \theta |_{0}^{\sec \theta} d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} \sec^{3} \theta \cos \theta d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} \sec^{2} \theta d\theta = \tan \theta |_{0}^{\pi/3} = \tan(\frac{\pi}{3}) = \sqrt{3}$$

a) (13 points)

Solve the system

$$x_1 + 2x_2 - 3x_3 + x_4 = 0$$
$$3x_1 - x_2 + 2x_3 - 2x_4 = 4$$
$$5x_1 + 3x_2 - 4x_3 = 4$$

Solution: We form the augmented matrix

$$\begin{bmatrix}
1 & 2 & -3 & 1 & 0 \\
3 & -1 & 2 & -2 & 4 \\
5 & 3 & -4 & 0 & 4
\end{bmatrix}$$

and row reduce it to reduced echelon form.

$$\begin{bmatrix} 1 & 2 & -3 & 1 & 0 \\ 3 & -1 & 2 & -2 & 4 \\ 5 & 3 & -4 & 0 & 4 \end{bmatrix} \rightarrow {}^{-3R_1+R_2;-5R_1+R_3} \begin{bmatrix} 1 & 2 & -3 & 1 & 0 \\ 0 & -7 & 11 & -5 & 4 \\ 0 & -7 & 11 & -5 & 4 \end{bmatrix}$$

$$\rightarrow {}^{-R_2+R_3;R_2/-7} \begin{bmatrix} 1 & 2 & -3 & 1 & 0 \\ 0 & 1 & -11/7 & 5/7 & -4/7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow {}^{-2R_2+R_1} \begin{bmatrix} 1 & 0 & 1/7 & -3/7 & 8/7 \\ 0 & 1 & -11/7 & 5/7 & -4/7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $x_1 = \frac{-x_3 + 3x_4 + 8}{7}$, $x_2 = \frac{11x_3 - 5x_4 - 4}{7}$ and x_3 and x_4 are arbitrary.

b) (12 points)

Give one differential equation that is equivalent to the system

$$x'(t) = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 3\sin(2t) \end{bmatrix}$$

Solution: The system is

$$\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 3\sin(2t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ x_1(t) + 3x_2(t) + 3\sin(2t) \end{bmatrix}$$

Thus

$$x'_1 = x_2$$

 $x''_1 = x'_2 = x_1 + 3x'_1 + 3\sin(2t)$

so the DE is

$$y'' - 3y' - y = 3\sin(2t)$$

Table of Integrals

$$\int \sin^2 x dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \sin^3 x dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + C$$

$$\int \cos^3 x dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x + C$$

$$\int \sec^2 \theta d\theta = \tan \theta + C$$