Name:

SSN:

Instructor:

Score on Final:_____

I pledge my honor that I have abided by the Stevens Honor System.

Ma 227 Final Exam Solutions13 May 1997

Directions: This examination is in two parts. In Part I you must solve all six (6) problems. In Part II choose any two problems. Each problem is worth **25** points. If you need more work space, continue the problem you are doing on the **other side of the page it is on**.

Score on Problem #1
#2
#3
#4
#5
#6
#7
#8
#9
Total

You may not use a calculator on this exam.

Part I: Answer all questions.

Problem 1

a) (8 points)

Find the first four nonzero terms of the Fourier sine series of

$$f(x) = \begin{cases} 0 & 0 < x < \frac{\pi}{2} \\ -2 & \frac{\pi}{2} < x < \pi \end{cases}$$

b) (8 points)

Sketch the graph of the function to which the Fourier series in (a) converges on $-2\pi < x < 3\pi$.

c) (9 points)

Find the eigenvalues and eigenfunctions for the problem

 $y'' + \lambda y = 0$; y'(0) = 0; $y(\frac{\pi}{2}) = 0$

Be sure to check the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$.

a) (10 points)

Use separation of variables, u(x,t) = X(x)T(t), to find ordinary differential equations which X(x) and T(t) must satisfy if u(x,t) is to be a solution of

$$5t^4x^3u_{xt} + (x+2)^2(t-5)u_{xx} = 0$$

Do not solve these equations.

b) (15 points)

Solve:

P.D.E.: $u_{xx} - 16u_{tt} = 0$ B.C.'s: u(0,t) = 0 $u_x(1,t) = 0$ I.C.: $u(x,0) = -3\sin\frac{5\pi x}{2} + 23\sin\frac{11\pi x}{2}; u_t(x,0) = 0$

a) (15 points)

Find the eigenvalues and eigenvectors of

$$A = \left(\begin{array}{rrrr} 3 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 0 \end{array}\right)$$

b) (10 points)

Find the solution, if it exists, of

a) (10 points)

Let $\vec{F} = -y\vec{i} + x\vec{j} - xyz\vec{k}$. Calculate $\oint_C \vec{F} \cdot d\vec{r}$, where *C* is the curve $x^2 + y^2 = 9, z = 3$ Solution: Parametrize *C* : $2\cos\theta = 2\sin\theta = 2 - 2 - 0 < \theta < 2$

$$\vec{r}(\theta) = 3\cos\theta, \quad y = 3\sin\theta, \quad z = 3 \quad 0 \le \theta \le 2\pi$$
$$\vec{r}(\theta) = 3\cos\theta \vec{i} + 3\sin\theta \vec{j} + 3\vec{k}$$
$$\vec{r}'(\theta) = -3\sin\theta \vec{i} + 3\cos\theta \vec{j}$$
$$\vec{F}(\theta) = -3\sin\theta \vec{i} + 3\cos\theta \vec{j} - 27\cos\theta\sin\theta \vec{k}$$

$$\vec{F}(\theta) \cdot \vec{r}'(\theta) = 9$$
$$\oint_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} 9d\theta = 18\pi$$

b) (13 points)

Using the \vec{F} in part a) calculate $\iint_{S} curl \vec{F} \cdot \vec{n} ds$, where S is the surface of the cone $z = \sqrt{x^2 + y^2}$ for $x^2 + y^2 \le 9$ (Note: $\cos^2\theta - \sin^2\theta = \cos 2\theta$)

c) (2 points)

Did you get the same answer in parts a) and b)? If yes, why and if no, why not?

Consider the $\int_C (6xy - 4e^x)dx + 3x^2dy$, where *C* is any piecewise smooth curve joining (0,0) and (-2,1)

a) (10 points)

Show that this line integral is independent of path.

Solution:

$$P = 6xy - 4e^x$$
$$Q = 3x^2$$

Thus

 $Q_x = 6x = P_y$

and the line integral is path independent.

b) (15 points)

Calculate the line integral given above. Solution: We find a potential function G(x, y)

 $G_x = P = 6xy - 4e^x$

so

$$G = 3x^2y - 4e^x + h(y)$$

Then

$$G_y = 3x^2 + h'(y) = Q = 3x^3$$

so h(y) = K. Thus

$$G(x,y) = 3x^2y - 4e^x + K$$

$$\int_C (6xy - 4e^x)dx + 3x^2dy = G(-2,1) - G(0,0) = 16 - 4e^{-2}$$

Problem 6

a) (13 points)

Let *S* be the closed surface consisting of the cone $z^2 = x^2 + y^2$ for $0 \le z \le 1$ and the "top" $x^2 + y^2 \le 1, z = 1$. Let $\vec{F} = (x + e^{y^2})\vec{i} + y\vec{j} + z\vec{k}$. Use the divergence theorem to calculate $\iint_S \vec{F} \cdot \vec{n} ds$

b) (12 points) Give an expression for the volume inside the sphere $x^2 + y^2 + z^2 = 4$ and outside the cylinder $x^2 + y^2 = 1$

Part II: Choose any *two* questions.

Problem 7

a) (13 points)

Evaluate $\iint_{S} \vec{v} \cdot \vec{n} dS$, where $\vec{v} = 2\vec{j} + xy\vec{k}$ and *S* is the part of the paraboloid $2z = x^2 + y^2$ inside $x^2 + y^2 = 6x$, and \vec{n} is the unit normal to *S* such that $\vec{n} \cdot \vec{k} > 0$.

b) (12 points)

Find the volume between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 1$ bounded below by the *x*, *y* –plane and above by z = 3y + 1, where $y \ge 0$.

a) (13 points)

Use Stokes' Theorem to evaluate $\oint_C \vec{v} \cdot d\vec{r}$, where $\vec{v} = y\vec{i} + xz\vec{j} + x^2\vec{k}$ and *C* is the boundary of the triangle cut from the plane x + y + z = 1 in the first octant, traversed counterclockwise when viewed from above.

b) (12 points)

Find all values of b for which

$$\begin{vmatrix} b & 0 & 1 & b \\ 0 & 1 & b & b \\ 1 & b & 0 & 2 \\ 0 & 1 & 1 & b \end{vmatrix} = (1-b)(5+b^3)$$

a) (10 points)

Suppose that $f(x) = \sum_{1}^{\infty} a_i \phi_i(x)$, where $\{\phi_1, \phi_2, \phi_3, ...\}$ is an orthonormal set on the interval [a, b]. Show that $\int_a^b f^2(x) dx = \sum_{1}^{\infty} a_i^2$

b.) (15 points)

Find the inverse of the matrix

$$\left(\begin{array}{rrrr} 1 & 3 & 2 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{array}\right)$$