%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/ma227f95.tex", Document, 10062, 4/6/1998, 22:20:38, "" % % "/document/ER0JED00.wmf", PastePict, 3046, 4/6/1998, 22:19:18, "" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% Start /document/ma227f95.tex %%%%%%%%%%%%%%%%%%%% %% This document created by Scientific Notebook (R) Version 3.0 \documentclass[12pt,thmsa]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{sw20jart} %TCIDATA{TCIstyle=article/art4.lat,jart,sw20jart} %TCIDATA{Created=Mon Aug 19 14:52:24 1996} %TCIDATA{LastRevised=Mon Apr 06 18:20:37 1998} %TCIDATA{CSTFile=Exam.cst} %TCIDATA{PageSetup=72,72,36,36,0} \input{tcilatex} \begin{document} \section{\protect\vspace{1pt}Ma 227\qquad Final Exam\qquad 10 May 1995} \vspace{1pt} \textbf{Directions: \ }This examination is in two parts. In Part I you must answer all six (6) problems. In Part II choose any two questions. \ Indicate on your blue book(s) which questions you have chosen. \subsection{Problem 1} \paragraph{a) \ (8 points)} Find the first four nonzero terms of the Fourier \emph{sine} series of\qquad \qquad \qquad \qquad \qquad \vspace{1pt} $f(x)=\left\{ \begin{array}{c} 0\qquad 00$ . \subsection{\protect\vspace{1pt}} \subsection{Problem 2} \paragraph{a) \ (10 points)} Use separation of variables, $u(x,t)=X(x)T(t)$ , to find ordinary \qquad \qquad differential equations which $X(x)$ and $T(t)$ must satisfy if $u(x,t)$ is to be a solution of\vspace{1pt} \vspace{1pt} \qquad \qquad $11t^{2}x^{9}u_{xx}-(t-3)(x+2)u_{ttt}=0\qquad \qquad \qquad \qquad $ \vspace{1pt} Do \emph{not} solve these equations. \vspace{1pt}\vspace{1pt} \paragraph{b) \ (15 points)} Solve: \qquad P.D.E.: \ $u_{xx}-4u_{tt}=0$ \vspace{1pt} \qquad B.C.'s: \ \ $u_{x}(0,t)=0\qquad u_{x}(\pi ,t)=0$ \qquad \qquad I.C.'s: \ \ $u(x,0)=0\qquad u_{t}(x,0)=-8\cos (4x)+17\cos (8x)\qquad \qquad \qquad $ \vspace{1pt}\newpage \subsection{\protect\vspace{1pt}} \subsection{Problem 3} \paragraph{a) \ (15 points)} Solve the system $AX=B$, where \vspace{1pt} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $A=\left[ \begin{array}{llll} 1 & -3 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & -6 & -1 & 2 \\ 0 & -1 & 1 & 2 \end{array} \right] $ \ \ and\qquad $B=\left[ \begin{array}{l} 2 \\ 1 \\ 5 \\ 0 \end{array} \right] \qquad \qquad \qquad $ \vspace{1pt}\vspace{1pt} \vspace{1pt} \vspace{1pt} \paragraph{b) \ (10 points)} Find the inverse of the matrix: \vspace{1pt} \qquad \qquad $A=\left[ \begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right] \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $ \vspace{1pt} \vspace{1pt} \subsection{Problem 4} \paragraph{a.} Let D be the solid cut from the sphere of radius $2$ centered at the origin by the plane $z=1$. (For D, $z\geq 1$ . See figure) \vspace{1pt} \vspace{1pt}$\qquad \qquad \qquad \qquad \qquad \qquad \qquad \FRAME{itbpF}{% 136.25pt}{146.0625pt}{0in}{}{}{Figure }{\special{language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "T";width 136.25pt;height 146.0625pt;depth 0in;original-width 133.5pt;original-height 143.3125pt;cropleft "0";croptop "1";cropright "1";cropbottom "0";tempfilename 'ER0JED00.wmf';tempfile-properties "XPR";}}$ \vspace{1pt}Express the volume of D as an iterated triple integral in \subparagraph{i) \ (4 points)\ } Rectanglar coordinates.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \ \ \qquad \qquad \qquad \subparagraph{\protect\vspace{1pt}ii) \ (4 points)} Cylindrical coordinates.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \ \ \qquad \qquad \qquad \subparagraph{\protect\vspace{1pt}iii) \ (4 points)} Spherical coordinates.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \subparagraph{\protect\vspace{1pt}iv) \ (3 points)} Then find the volume by evaluating one of the three triple integrals you obtained above.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \ \ \paragraph{\protect\vspace{1pt}} \paragraph{b)} Let $\overrightarrow{F}=(y\cos z-yze^{x})\overrightarrow{i}+(x\cos z-ze^{x})% \overrightarrow{j}-(xy\sin z+ye^{x}+2)\overrightarrow{k}$ . \subparagraph{\protect\vspace{1pt}} \subparagraph{i) \ (3 points)} Calculate the curl of $\overrightarrow{F}$.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \subparagraph{\protect\vspace{1pt}ii) (7 points)} Does there exist a function $f(x,y,z)$ such that $\overrightarrow{F}=% \overrightarrow{\nabla }f$ ? If yes, \vspace{1pt}find $f(x,y,z)$ .\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \ \ \vspace{1pt} \subsection{Problem 5} \paragraph{a) \ (10 points)} The iterated integral \vspace{1pt} $I=\int_{0}^{2}\int_{\frac{y}{2}}^{1}ye^{x^{3}}$ $dxdy$ \vspace{1pt} cannot be evaluated by first integrating with respect to $x$. Sketch the region $R$ over which the integration is to be performed. Write another iterated integral for $I$\ and carry out the integration.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \vspace{1pt} \paragraph{b)} \subparagraph{\protect\vspace{1pt}i) \ (10 points)} Use Green's theorem to evaluate the line integral \vspace{1pt} $\oint_{C}(x^{3}+\sin x\sin y)dx+(\tan y-\cos x\cos y)dy\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $ \vspace{1pt} \vspace{1pt}where $C$ is the circle $x^{2}+y^{2}=1$ . \subparagraph{\protect\vspace{1pt}} \subparagraph{ii) \ (5 points)} Does the answer in (i) change if $C$ is any closed curve in the $xy$ -plane? \vspace{1pt} Explain.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \subsection{\protect\vspace{1pt}} \subsection{Problem 6} \paragraph{a) \ (15 points)} Verify Stokes' Theorem for the vector $\overrightarrow{v}=y\overrightarrow{i}% -x\overrightarrow{j},$ where $S$ is the \vspace{1pt}hemisphere $x^{2}+y^{2}+z^{2}=9$, $z\geq 0$ .\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \vspace{1pt}\vspace{1pt} \paragraph{b) \ (10 points)} Find the value of the line integral $\oint_{C}xdx+(x+y)dy+(x+y+z)dz$, \vspace{1pt}where $C$ is the line segment from $(1,0,-1)$ to $(2,3,4)$% .\qquad \qquad \qquad \qquad \qquad \qquad \qquad \vspace{1pt}\newpage \textbf{Part II}: Solve \emph{two entire} problems. \subsection{\protect\vspace{1pt}Problem 7} \paragraph{a) \ (10 points)} Find the surface area of the caps cut from the sphere $x^{2}+y^{2}+z^{2}=4$ by the cylinder $x^{2}+y^{2}=1$ . Sketch the surface.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \paragraph{\protect\vspace{1pt}} \paragraph{b. \ (15 points)} Let $S$ be the surface of the solid cylinder $T$ bounded by $z=0$ and \vspace{1pt} $z=3$ and $x^{2}+y^{2}=4$. Evaluate$\int \int_{S}\overrightarrow{F}\cdot \overrightarrow{n}dS$, where \vspace{1pt} $\overrightarrow{F}=(x^{2}+y^{2}+z^{2})(x\overrightarrow{i}+y\overrightarrow{% j}+z\overrightarrow{k})$ and $\overrightarrow{n}$ is the outward unit normal. \vspace{1pt} Sketch the surface.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \subsection{\protect\vspace{1pt}} \subsection{Problem 8} \paragraph{a) \ (13 points)} Let $S$\ be the surface of the region $V$ bounded by $z=0$, $y=0$, $y=2,$ and the paraboloid $z=1-x^{2}$ . Apply the divergence theorem to \vspace{1pt} compute $\int \int_{S}\overrightarrow{F}\cdot \overrightarrow{n}dS$, where $% \overrightarrow{n}$ is the outer unit normal to $S$ and \vspace{1pt} $\overrightarrow{F}=(x+\cos y)\overrightarrow{i}+(y+\sin z)\overrightarrow{j}% +(z+e^{x})\overrightarrow{k}$ .\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \paragraph{\protect\vspace{1pt}} \paragraph{b) \ (12 points)} Find the volume of the region $T$ that is bounded by the parabolic \vspace{1pt}cylinder $x=y^{2}$ and the planes $z=0$ and $x+z=1$. \subsection{\protect\vspace{1pt}} \subsection{Problem \protect\vspace{1pt}9} \paragraph{a) \ (15 points)} Find the eigenvalues of the matrix \vspace{1pt} \qquad \qquad $\left[ \begin{array}{lll} 2 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{array} \right] $ \vspace{1pt} Find the eigenvectors corresponding to the \emph{largest} and \emph{smallest} \vspace{1pt}eigenvalues.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \paragraph{\protect\vspace{1pt}} \paragraph{\protect\vspace{1pt}b) \ (10 points)} Let $\overrightarrow{F}$\ be such that $\oint_{C}\overrightarrow{F}\cdot \overrightarrow{dr}=0$ for any closed path $C$. Prove that $\int \overrightarrow{F}\cdot \overrightarrow{dr}$ is path independent.\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\ \ \ \end{document} %%%%%%%%%%%%%%%%%%%%%% End /document/ma227f95.tex %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% Start /document/ER0JED00.wmf %%%%%%%%%%%%%%%%%%%% WwlqZB@@@@@@@PeDlNA{I@@@@@p_TH@@I@@@C`^A@@`B@xC@@@@@@T@@@@PBB@@@@@PA@@@@AHp O@D@@@@PP@M@PA@@@@KH@@@@@@E@@@@p`@{H@EBP@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@B| C@A@@@@DDPC@P@@@@@AAt@@E@@@@d`@@@@@@T@@@@P@B@pLs@PA@@@@IH@@@@@@E@@@@D`@@ LsL@d@@@@`~BX@@D@@@@@@@@@`H@P@@@@PKA@@@G@@@@po@@@@@@@@@@@@A@@@@mDP@@P@@@@`A AD@@~@@@@Pr@]@PY@tP@mAp~@\G@jC@a@lM@SB`s@PJ@CCpm@pK@@CPn@hL@wBPu@TK@_CPm@dN @uB@}@\K@~CPn@\P@|B`FALL@kD`s@hS@[CpQAhN@QEp~@dU@MD`NAtP@[DPCAhO@MD`v@tP@{B PCApI@MDp_@tP@eAPCAP@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@DDPC@P@@@@@AA t@@E@@@@d`@@@@@@T@@@@P@B|CPB@@@@zK`A@P@@@@@@@@@@b@@A@@@@mD`@@P@@@@@|A@@@ G@@@@po@@@pO@@@@A@@@@mD@@@\@@@@@BD@@@@@@@@@@D@@@@tR@C@pA@@@@XP`nALV@rBp V@P@@@@PKA@@@D@@@@xR@X@PA@@@@IH@@@@@@E@@@@D`@@P@@@@@AAt@@D@@@@PP@M@PA@@ @@IH@@@@@@E@@@@D`@@d@@@@`~BX@@D@@@@@@@@@`H@P@@@@PKAP@@D@@@@@_@B@@A@@@@m D@@@P@@@@PKAL@@G@@@@`AAnEPYAPP@[A@A@@@@mD@@@P@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@ B|C@A@@@@DDPC@P@@@@@AAt@@E@@@@d`@@LsL@T@@@@P@B|CPA@@@@IH@@sLC@E@@@@D` @@T@@@@PBB@pLs@PA@@@@AHpO@I@@@@ho@F@p@@@@@@LsL@HB@D@@@@tR@B@@A@@@@pG @A@\@@@@@B@@@@LsL@@@@D@@@@tR@D@PB@@@@zKPA@@@@@@@@@@@@b@@A@@@@mDPA@l@@@@`FH PT@nG@KAx^@^E`MBLQ@kG@A@@@@mD`@@T@@@@PBB@pLs@PA@@@@AHpO@I@@@@ho@F@p@@@@@ @LsL@HB@D@@@@tR@F@@A@@@@pG`@@P@@@@PKA@@@D@@@@@_@D@PA@@@@TH@NAp^@E@@@@La@xD` w@P@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@DDPC@P@@@@@AAt@@E@@@@d`@@LsL@T @@@@P@B|CPA@@@@IH@@sLC@E@@@@D`@@T@@@@PBB@pLs@PA@@@@AHpO@I@@@@ho@F @p@@@@@@LsL@HB@D@@@@tR@B@@A@@@@pG`A@\@@@@@B@@@@LsL@@@@D@@@@tR@D@@A@@@@mDPA @l@@@@`FH@_@R@`@BPB@wHPJ@p^@^OA@@@@mD`@@T@@@@PBB@pLs@PA@@@@AHpO@I@@@@ho @F@p@@@@@@LsL@HB@D@@@@tR@F@@A@@@@pG`@@P@@@@PKA@@@D@@@@@_@D@PA@@@@TH@~AtA@E@ @@@La@yD@w@P@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@DDPC@P@@@@@AAt@@E@@@@ d`@@LsL@T@@@@P@B|CPA@@@@IH@@sLC@E@@@@D`@@T@@@@PBB@pLs@PA@@@@AHpO@ I@@@@ho@F@p@@@@@@LsL@HB@D@@@@tR@B@@A@@@@pG`A@\@@@@@B@@@@LsL@@@@D@@@@tR@D@@ A@@@@mDPA@l@@@@`FHXB@iC`I@DM@j@p@A|}xB@A@@@@mD`@@T@@@@PBB@pLs@PA@@@@AHp O@I@@@@ho@F@p@@@@@@LsL@HB@D@@@@tR@F@@A@@@@pG`@@P@@@@PKA@@@D@@@@@_@D@PA@@@@T H`MAtM@E@@@@La@h@Pw@P@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@DDPC@P@@@@@A Ad@@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@mDp@@P@@@@@AAt@@D@@@@xR@Y@PA@@@@IH@@sLC @D@@@@HP@A@@D@@@@{K@tC@@@@@@@@Y@@@@@@\@@A@PPreVXlA@@@P@@@@PKAH@@E@@@@Pa@mE @~A\@@@@PHED@@yA@@@@@@E@@@@Pa@mEpCBP@@@@`KA`A@E@@@@d`@@@@@@T@@@@P@B|C@A@ @@@DDPC@P@@@@@AAd@@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@DDPC@P@@@@`KAdA@E@@@@d`@ @LsL@P@@@@`@AD@@P@@@@lo@PO@@@@@@@@dA@@@@@pA@D@@AIWZaqF@@@@A@@@@mD@A@T@@@@@ EBlb@FApA@@@@aTP@@`G@@@@@@T@@@@@EBlb@^A@A@@@@nD@F@T@@@@PBB@@@@@PA@@@@AHp O@D@@@@PP@M@@A@@@@DDPB@T@@@@PBB@@@@@PA@@@@AHpO@D@@@@PP@M@@A@@@@nDPF@T@@@ @PBB@pLs@@A@@@@BDP@@@A@@@p~B@}@@@@@@@@PF@@@@@@G@P@@Dd\iEF[@@@@D@@@@tR@G@PA @@@@THpS@@P@G@@@@DRAA@`^@@@@@@PA@@@@THpS@`Q@D@@@@xR@X@PA@@@@IH@@@@@@E@@@@D` @@P@@@@@AAt@@D@@@@PP@M@PA@@@@IH@@sLC@E@@@@D`@@T@@@@PBB@pLs@PA@@@@AH pO@I@@@@ho@F@@A@@@@@LsL@HB@D@@@@tR@H@@A@@@@pG`A@P@@@@PKA@@@D@@@@XP@A@@A@ @@@mDPA@h@@@@@ICL@@YDPp@dQ@CCpFALL@D@@@@tR@H@`B@@@@eLp@@dQ@ACPFALL@[Dpp@P@@ @@`KA`A@E@@@@d`@@@@@@T@@@@P@B|C@A@@@@DDPC@P@@@@@AAt@@E@@@@d`@@LsL@T@@@@P @B|CPA@@@@IH@@sLC@E@@@@D`@@d@@@@`~BX@@D@@@@@pLs@`H@P@@@@PKAX@@D@@@@@ _@H@@A@@@@mD@@@P@@@@`AAD@@D@@@@tR@E@`B@@@@dLp@@\R@GCPJA\L@iDPq@P@@@@PKAX@@J @@@@Tr@C@pIA\L@iDpq@dR@EC@A@@@@nD@F@T@@@@PBB@@@@@PA@@@@AHpO@D@@@@PP@M@@A @@@@DDPC@T@@@@PBB@pLs@PA@@@@AHpO@E@@@@d`@@LsL@T@@@@P@B|CPB@@@@zK`A@P@ @@@@@sLC@b@@A@@@@mD@B@P@@@@@|AX@@D@@@@tR@@@@A@@@@FDP@@P@@@@PKAT@@J@@@@Pr@C@ p`AdH@CFpa@TX@GB@A@@@@mD@B@h@@@@PICL@@CFPb@LX@GBPaA\H@D@@@@xR@X@PA@@@@IH@@@ @@@E@@@@D`@@P@@@@@AAt@@D@@@@PP@M@PA@@@@IH@@sLC@E@@@@D`@@T@@@@PBB@pL s@PA@@@@AHpO@I@@@@ho@F@@A@@@@@LsL@HB@D@@@@tR@F@@A@@@@pG@B@P@@@@PKA@@@E@@ @@Pa@GCPJAT@@@@pDB\H@CF@A@@@@nD@F@T@@@@PBB@@@@@PA@@@@AHpO@D@@@@PP@M@@A@@ @@DDPB@T@@@@PBB@@@@@PA@@@@AHpO@D@@@@tR@C@@A@@@@DDPC@P@@@@`KAdA@E@@@@d`@@ LsL@P@@@@`@AD@@P@@@@lo@PO@@@@@@@@dA@@@@@pA@D@@AIWZaqF@@@@A@@@@mD@B@T@@@@@E B|I@XFpA@@@@aTP@@PD@@@@@@T@@@@@EB|I@{FPA@@@@IH@@@@@@E@@@@D`@@P@@@@@AAt@ @I@@@@ho@@@@@@@@@@@@@@HB@D@@@@tR@I@@A@@@@mD@@@P@@@@@|AX@@D@@@@tR@I@@A@@@@mD @@@L@@@@@@@@ %%%%%%%%%%%%%%%%%%%%%% End /document/ER0JED00.wmf %%%%%%%%%%%%%%%%%%%%%