Ma 227 Review of Surface Integrals, Stokes' Theorem, and Divergence Theorem

Surface Integrals

Suppose $f(x, y, z)$ is a function of three variables whose domain includes a surface S. Then

$$
\iint_{S} f(x, y, z) d s
$$

is called the surface integral of f over S. Suppose that a surface S has a vector equation

$$
\vec{r}(u, v)=x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k}
$$

where the parameters (u, v) have values in some domain D. We define the derivatives (tangent vectors)

$$
\vec{r}_{u}(u, v)=\frac{\partial x(u, v)}{\partial u} \vec{i}+\frac{\partial y(u, v)}{\partial u} \vec{j}+\frac{\partial z(u, v)}{\partial u} \vec{k}
$$

and

$$
\vec{r}_{v}(u, v)=\frac{\partial x(u, v)}{\partial v} \vec{i}+\frac{\partial y(u, v)}{\partial v} \vec{j}+\frac{\partial z(u, v)}{\partial v} \vec{k}
$$

If \vec{r}_{u} and \vec{r}_{v} are nonzero and non-parallel in D, the surface integral over S is given as

$$
\iint_{S} f(x, y, z) d s=\iint_{G} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

where G is the image of the surface S in the u, v-plane, and $f(\vec{r}(u, v))$ is short for $f(x(u, v), y(u, v), z(u, v))$.

Graph of $z=g(x, y)$
Any surface with equation

$$
z=g(x, y)
$$

can be regarded as a parametric surface with parametric equations

$$
x=u, \quad y=v, \quad z=g(u, v)
$$

that is,

$$
\vec{r}(u, v)=u \vec{i}+v \vec{j}+g(u, v) \vec{k}
$$

Now

$$
\begin{aligned}
\vec{r}_{u} & =\vec{i}+g_{u}(u, v) \vec{k} \\
\vec{r}_{v} & =\vec{j}+g_{v}(u, v) \vec{k}
\end{aligned}
$$

so that

$$
\vec{r}_{u} \times \vec{r}_{v}=-g_{u} \vec{i}-g_{v} \vec{j}+\vec{k}
$$

and

$$
\left|\vec{r}_{u} \times \vec{r}_{v}\right|=\left[1+g_{u}^{2}+g_{v}^{2}\right]^{\frac{1}{2}}
$$

Because $u=x, v=y$ we get

$$
\iint_{S} f(x, y, z) d s=\iint_{G} f(x, y, g(x, y))\left[1+g_{x}^{2}+g_{y}^{2}\right]^{\frac{1}{2}} d x d y
$$

Hence, if we let $f(x, y, z)=1$, we get

$$
\iint_{S} f(x, y, z) d s=\iint_{G}\left[1+g_{x}^{2}+g_{y}^{2}\right]^{\frac{1}{2}} d x d y
$$

the area of S, as we should.
In general

$$
\iint_{S} f(x, y, z) d s=\iint_{G} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

gives for $f(x, y, z)=1$ the area of S.
In class we evaluated $\iint_{S} f(x, y, z) d s$ where $f=x^{2}$ and S was the part of the cone $z=x^{2}+y^{2}$ between the planes $z=1$ and $z=2$. We used spherical coordinates and set $\phi=\frac{\pi}{4}$ for the equation of the cone.
Here, let us do a somewhat simplified example.
Example 1: Compute the surface integral $\iint_{S} x^{2} d s$ where S is the unit sphere $x^{2}+y^{2}+z^{2}=1$.
Solution:
We use spherical coordinates, $\rho=1 ; 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$

$$
\begin{gathered}
x=\sin \phi \cos \theta, \quad y=\sin \phi \sin \theta, \quad z=\cos \phi \\
\vec{r}(\phi, \theta)=\sin \phi \cos \theta \vec{i}+\sin \phi \sin \theta \vec{j}+\cos \phi \vec{k} \\
\vec{r}_{\phi}=\cos \phi \cos \vec{i}+\cos \phi \sin \theta \vec{j}-\sin \phi \vec{k} \\
\vec{r}_{\theta}=-\sin \phi \sin \theta \vec{i}+\sin \phi \cos \theta \vec{j}
\end{gathered}
$$

so

$$
\begin{gathered}
\vec{r}_{\varphi} \times \vec{r}_{\theta}=\sin ^{2} \phi \cos \theta \vec{i}+\sin ^{2} \phi \sin \theta \vec{j}+\sin \phi \cos \phi \vec{k} \\
\left|\vec{r}_{\varphi} \times \vec{r}_{\theta}\right|=\sin \phi
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\iint_{S} x^{2} d s & =\int_{0}^{2 \pi} \int_{0}^{\pi}(\sin \phi \cos \theta)^{2} \vec{r}_{\varphi} \times \vec{r}_{\theta} \mid d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}(\sin \phi \cos \theta)^{2} \sin \phi d \phi d \theta=\frac{4}{3} \pi
\end{aligned}
$$

Vector Fields

A vector field on a domain D is a function \vec{F} that assigns to each point (x, y, z) in D a three dimensional
vector $\vec{F}(x, y, z)$. In terms of the component functions the vector field \vec{F} is given by

$$
\vec{F}(x, y, z)=P(x, y, z) \vec{i}+Q(x, y, z) \vec{j}+R(x, y, z) \vec{k}
$$

One is interested in integrals of the form

$$
\iint_{S} \vec{F} \cdot \vec{n} d s
$$

where \vec{n} is a unit normal (perpendicular) vector to this surface S pointing in the outward direction. A unit normal to this surface given in a parametric form is

$$
\pm \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}
$$

The appropriate sign (either + or -) is chosen that makes the normal point outward. Since $\vec{F} \cdot \vec{n}$ is a scalar we may use our earlier formulation for this surface integral to write

$$
\iint_{S} \vec{F} \cdot \vec{n} d s=\iint_{G} \vec{F} \cdot\left(\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\right)\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v=\iint_{G} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v
$$

Example:
Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d s$ where $\vec{F}=y \vec{i}+x \vec{j}+z \vec{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Solution:

The graph of the surface is shown below.

The surface S consists of the part of the parboiled S_{1} between $0 \leq z \leq 1$ and the circle $x^{2}+y^{2} \leq 1, z=0, S_{2}$.
On the paraboloid

$$
x=u, y=v, z=1-u^{2}-v^{2}
$$

so

$$
\begin{aligned}
\vec{r}(u, v) & =u \vec{i}+v \vec{j}+\left(1-u^{2}-v^{2}\right) \vec{k} \\
\vec{r}_{u} & =\vec{i}-2 u \vec{k} \\
\vec{r}_{v} & =j-2 v \vec{k} \\
\vec{r}_{u} \times \vec{r}_{v} & =2 u \vec{i}+2 v \vec{j}+\vec{k}
\end{aligned}
$$

Note that when $x=y=u=v=0$, then $\vec{r}_{u} \times \vec{r}_{v}=\vec{k}$ which is points in the outward direction. Thus we
use $\vec{r}_{u} \times \vec{r}_{v}$.

$$
\vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)=4 u v+\left(1-u^{2}-v^{2}\right)
$$

Using polar coordinates $u=r \cos \theta, v=r \sin \theta$ we have

$$
\begin{aligned}
\iint_{S_{1}} \vec{F} \cdot d S & =\iint_{S_{1}} \vec{F} \cdot \vec{n} d s \\
& =\iint^{2}\left[4 u v+\left(1-u^{2}-v^{2}\right)\right] d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4 r^{2} \cos \theta \sin \theta+1-r^{2}\right) r d r d \theta=\frac{\pi}{2}
\end{aligned}
$$

On the unit disk in the x, y-plane centered at the origin we have $\vec{n}=-\vec{k}, \vec{F} \cdot \vec{n}=-z=0$ so

$$
\iint_{S_{2}} \vec{F} \cdot d S=\iint_{S_{2}} \vec{F} \cdot \vec{n} d s=0
$$

Thus

$$
\iint_{S} \vec{F} \cdot d S=\iint_{S} \vec{F} \cdot \vec{n} d s=\frac{\pi}{2}
$$

Stokes' Theorem

Let S be a regular surface bounded by a closed curve denoted by ∂S (boundary of S). Let \vec{F} and $\operatorname{curl} \vec{F}$ be continuous over S. Then

$$
\iint_{S} c u r l \vec{F} \cdot \vec{n} d s=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d s=\oint_{\partial S} \vec{F} \cdot d \vec{r}
$$

Here the direction of integration around ∂S is positive if the region it encloses is to the left when we go round it with our head in the direction of \vec{n}.
Example
Verify that Stokes' Theorem is true for the vector field $\vec{F}=3 y \vec{i}+4 z \vec{j}-6 x \vec{k}$ and S is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the x, y-plane, oriented upward.
Solution:
$9-x^{2}-y^{2}$

For the line integral: The boundary is the circle $z=0, x^{2}+y^{2}=9$. We parametrize the circle as $x=3 \cos \theta, y=3 \sin \theta, 0 \leq \theta \leq 2 \pi$. Thus

$$
\vec{r}(\theta)=3 \cos \theta \vec{i}+3 \sin \theta \vec{j}+0 \vec{k} \quad 0 \leq \theta \leq 2 \pi
$$

Then

$$
\begin{gathered}
\vec{r}^{\prime}(\theta)=-3 \sin \theta \vec{i}+3 \cos \theta \vec{j} \\
\vec{F}(\theta) \cdot \vec{r}^{\prime}(\theta)=(9 \sin \theta \vec{i}+0 \vec{j}-6(3 \cos \theta) \vec{k}) \cdot(-3 \sin \theta \vec{i}+3 \cos \theta \vec{j})=-27 \sin ^{2} \theta \\
\oint_{\partial S} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi}\left(-27 \sin ^{2} \theta\right) d \theta=-27 \pi
\end{gathered}
$$

For the surface

$$
\begin{gathered}
x=r \cos \theta, \quad y=r \sin \theta, \quad z=9-r^{2}, \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 3 \\
\vec{r}(\theta, r)=r \cos \theta \vec{i}+r \sin \theta \vec{j}+\left(9-r^{2}\right) \vec{k} \\
\vec{r}(\theta, r)=\left(r \cos \theta, r \sin \theta, 9-r^{2}\right) \\
\frac{\partial \vec{r}(\theta, r)}{\partial \theta}=(-r \sin \theta, r \cos \theta, 0) \\
\frac{\partial \vec{r}(\theta, r)}{\partial r}=(\cos \theta, \sin \theta,-2 r)
\end{gathered}
$$

$(\cos \theta, \sin \theta,-2 r) \times(-r \sin \theta, r \cos \theta, 0)=\left(2 r^{2} \cos \theta, 2 r^{2} \sin \theta,\left(\cos ^{2} \theta\right) r+\left(\sin ^{2} \theta\right) r\right)$
So

$$
\vec{r}_{r} \times \vec{r}_{\theta}=2 r^{2} \cos \theta \vec{i}+2 r^{2} \sin \theta \vec{j}+r \vec{k}
$$

Letting $\theta=0$, we see that $\vec{r}_{u} \times \vec{r}_{v}=2 r^{2} \vec{i}+r \vec{k}$, which points outward since $r \geq 0$. Thus we use $\vec{r}_{u} \times \vec{r}_{v}$. $\vec{F}=(3 y, 4 z,-6 x) \quad \nabla \times \vec{F}=(-4,6,-3)$

$$
\begin{aligned}
\operatorname{curl} \vec{F} \cdot\left(\vec{r}_{r} \times \vec{r}_{\theta}\right) & =(-4,6,-3) \cdot\left(2 r^{2} \cos \theta, 2 r^{2} \sin \theta, r\right) \\
& =-8 r^{2} \cos \theta+12 r^{2} \sin \theta-3 r
\end{aligned}
$$

Thus

$$
\iint_{S} \operatorname{curl\vec {F}\cdot \vec {n}ds=\int _{0}^{2\pi }\int _{0}^{3}(-8r^{2}\operatorname {cos}\theta +12r^{2}\operatorname {sin}\theta -3r)drd\theta =-27\pi ,~(2)}
$$

Example: Calculate the work done by the force field

$$
\vec{F}(x, y, z)=\left(x^{x}+z^{2}\right) \vec{i}+\left(y^{y}+x^{2}\right) \vec{j}+\left(z^{z}+y^{2}\right) \vec{k}
$$

when a particle moves under its influence around the edge of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies in the first octant, in a counterclockwise direction as viewed from above.
Solution:
Given the form of \vec{F} it is clear that evaluating the line integral that gives the work is non-trivial, if not impossible. We shall use Stokes' Theorem to evaluate the line integral and hence find the work.

$$
\begin{array}{r}
\vec{F}=\left(x^{x}+z^{2}, y^{y}+x^{2}, z^{z}+y^{2}\right) \quad \nabla \times \vec{F}=(2 y, 2 z, 2 x)=2 y \vec{i}+2 \overrightarrow{z j}+2 x \vec{k} \\
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d s=\oint_{\partial S} \vec{F} \cdot d \vec{r}
\end{array}
$$

First we deal with the surface integral by parametrizing the portion of the sphere in the first octant using spherical coordinates. Since the sphere has radius $2, \rho=2$. Thus

$$
x=2 \sin \phi \cos \theta, \quad y=2 \sin \phi \sin \theta, \quad z=2 \cos \phi \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

Note that the limits on ϕ and θ come from the fact that we are interested only in the part of the sphere in the first octant.
As usual

$$
\vec{r}(\theta, \phi)=2 \sin \phi \cos \theta \vec{i}+2 \sin \phi \sin \theta \vec{j}+2 \cos \phi \vec{k}
$$

so

$$
\vec{r}_{\theta} \times \vec{r}_{\phi}=-4 \sin ^{2} \phi \cos \theta \vec{i}-4 \sin ^{2} \phi \sin \theta \vec{j}-4 \sin \phi \cos \phi \vec{k}
$$

This normal points "down" (let $\phi=\frac{\pi}{2}, \theta=0$) so we use $-\vec{r}_{\theta} \times \vec{r}_{\phi}$, which points upward.

$$
\begin{aligned}
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d s & =\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot\left(-\vec{r}_{\theta} \times \vec{r}_{\phi}\right) d s \\
& =\iint_{S}(4 \sin \phi \sin \theta \vec{i}+4 \cos \phi \vec{j}+4 \sin \phi \cos \theta \vec{k}) \cdot\left(4 \sin ^{2} \phi \cos \theta \vec{i}+4 \sin ^{2} \phi \sin \theta \vec{j}+4 \sin \phi \cos \phi \vec{k}\right) \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}}\left(16 \sin ^{3} \phi \sin \theta \cos \theta+16 \cos \phi \sin ^{2} \phi \sin \theta+16 \sin ^{2} \phi \cos \phi \cos \theta\right) d \theta d \phi=16
\end{aligned}
$$

The Divergence Theorem

Remark: We shall call a surface S positively oriented if the unit normal \vec{n} is an outer normal; otherwise, S is negatively oriented.

Theorem: Suppose S is a regular, positively oriented, closed surface, and that \vec{F} and $\operatorname{div} \vec{F}$ are continuous over S and the region V is enclosed by S.

Then

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d s=\iiint_{V} d i v \vec{F} d v=\iiint_{V} \nabla \cdot \vec{F} d v
$$

where \vec{n} is the outward normal to S.
Example: Verify that the Divergence Theorem is true for the vector field $\vec{F}=3 x \vec{i}+x y \vec{j}+2 x z \vec{k}$ and V is the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0, z=1$.
Solution:
Since $\operatorname{div} \vec{F}=3+x+2 x=3+3 x$, then

$$
\iiint_{V} \nabla \cdot \vec{F} d v=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(3 x+3) d x d y d z=\frac{9}{2}
$$

There are six faces to the cube.
Face $x=0$, then $\vec{n}=-\vec{i}$, so $\vec{F} \cdot \vec{n}=3 x=0$
Face $x=1$, then $\vec{n}=\vec{i}, \vec{F} \cdot \vec{n}=3 x=3$, so $\iint_{\text {face } x=1} \vec{F} \cdot \vec{n} d s=\iint_{\text {face } x=1} 3 d s=3 \times$ area of face $=3$
Face $y=0, \vec{n}=-\vec{j}, \vec{F} \cdot \vec{n}=-x y=0$
Face $y=1, \vec{n}=\vec{j}, \vec{F} \cdot \vec{n}=x y=x$ so $\iint_{\text {face } y=1} \vec{F} \cdot \vec{n} d s=\int_{0}^{1} \int_{0}^{1} x d x d z=\frac{1}{2}$

Face $z=0, \vec{n}=-\vec{k}, \vec{F} \cdot \vec{n}=-2 x z=0$
Face $z=1, \vec{n}=\vec{k}, \vec{F} \cdot \vec{n}=2 x z=2 x$ so $\iint_{\text {face } z=1} \vec{F} \cdot \vec{n} d s=\int_{0}^{1} \int_{0}^{1} 2 x d x d y=1$
Thus

$$
\iint_{S} \vec{F} \cdot \vec{n} d s=0+3+0+\frac{1}{2}+0+1=\frac{9}{2}
$$

as before.

Example
Use the Divergence Theorem to calculate the surface integral $\iint_{S} \vec{F} \cdot d \vec{S}$ where
$\vec{F}(x, y, z)=x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}$, and S is the sphere $x^{2}+y^{2}+z^{2}=1$
Solution:
$\operatorname{div} \vec{F}=3\left(x^{2}+y^{2}+z^{2}\right)$ so

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{V} 3\left(x^{2}+y^{2}+z^{2}\right) d V
$$

Switching to spherical coordinates we have since

$$
d V=\rho^{2} \sin \phi d \rho d \theta d \phi
$$

and $x^{2}+y^{2}+z^{2}=\rho^{2}$

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d \vec{S} & =\iiint_{V} 3\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{1} 3 \rho^{4} \sin \phi d \rho d \theta d \phi=\frac{12}{5} \pi
\end{aligned}
$$

