
Ma 227 Review of Surface Integrals, Stokes’ Theorem, and
Divergence Theorem

Surface Integrals
Suppose fx,y, z is a function of three variables whose domain includes a surface S. Then


S

fx,y, zds

is called the surface integral of f over S. Suppose that a surface S has a vector equation

ru,v  xu,vi yu,vj zu,vk

where the parameters u,v have values in some domain D. We define the derivatives (tangent vectors)

ruu,v 
∂xu,v
∂u i

∂yu,v
∂u j

∂zu,v
∂u k

and

rvu,v 
∂xu,v
∂v i

∂yu,v
∂v j

∂zu,v
∂v k

If ru and rv are nonzero and non-parallel in D, the surface integral over S is given as


S

fx,y, zds  
G

fru,v|ru  rv |dudv

where G is the image of the surface S in the u,v −plane, and fru,v is short for
fxu,v,yu,v, zu,v.

Graph of z  gx,y

Any surface with equation

z  gx,y

can be regarded as a parametric surface with parametric equations

x  u, y  v, z  gu,v

that is,

ru,v  ui vj gu,vk

Now

ru  i guu,vk

rv  j gvu,vk

so that

ru  rv  −gui− gvj k

1



and

|ru  rv |  1  gu
2  gv

2 
1
2

Because u  x,v  y we get


S

fx,y, zds  
G

fx,y,gx,y1  gx
2  gy

2 
1
2 dxdy

Hence, if we let fx,y, z  1, we get


S

fx,y, zds  
G

1  gx
2  gy

2 
1
2 dxdy

the area of S, as we should.
In general


S

fx,y, zds  
G

fru,v|ru  rv |dudv

gives for fx,y, z  1 the area of S.

In class we evaluated 
S

fx,y, zds where f  x2 and S was the part of the cone z  x2  y2 between the

planes z  1 and z  2. We used spherical coordinates and set   
4 for the equation of the cone.

Here, let us do a somewhat simplified example.

Example 1: Compute the surface integral 
S

x2ds where S is the unit sphere x2  y2  z2  1.

Solution:
We use spherical coordinates,   1; 0 ≤  ≤ , 0 ≤  ≤ 2

x  sincos, y  sin sin, z  cos

r,  sincosi sin sinj cosk

r  coscosi cos sinj− sink

r  − sin sini sincosj

so

r  r  sin2cosi sin2 sinj sincosk

|r  r |  sin

Therefore,


S

x2ds  
0

2 
0


sincos2|r  r |dd

 
0

2 
0


sincos2 sindd  4
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Vector Fields

A vector field on a domain D is a function F that assigns to each point x,y, z in D a three dimensional
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vector Fx,y, z. In terms of the component functions the vector field F is given by

Fx,y, z  Px,y, zi Qx,y, zj Rx,y, zk

One is interested in integrals of the form


S

F  nds

where n is a unit normal (perpendicular) vector to this surface S pointing in the outward direction. A
unit normal to this surface given in a parametric form is

 ru  rv

|ru  rv |

The appropriate sign (either  or −) is chosen that makes the normal point outward. Since F  n is a
scalar we may use our earlier formulation for this surface integral to write


S

F  nds  
G

F  ru  rv

|ru  rv |
|ru  rv |dudv  

G

F  ru  rvdudv

Example:

Evaluate 
S

F  dS  
S

F  nds where F  yi xj zk and S is the boundary of the solid region E

enclosed by the paraboloid z  1 − x2 − y2 and the plane z  0.
Solution:
The graph of the surface is shown below.

The surface S consists of the part of the parboiled S1 between 0 ≤ z ≤ 1 and the circle
x2  y2 ≤ 1, z  0, S2.
On the paraboloid

x  u, y  v, z  1 − u2 − v2

so

ru,v  ui vj 1 − u2 − v2k

ru  i− 2uk

rv  j − 2vk

ru  rv  2ui 2vj k

Note that when x  y  u  v  0, then ru  rv  kwhich is points in the outward direction. Thus we
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use ru  rv.

F  ru  rv  4uv  1 − u2 − v2

Using polar coordinates u  rcos,v  r sin we have


S1

F  dS  
S1

F  nds

  4uv  1 − u2 − v2dudv

 
0

2 
0

1
4r2 cos sin  1 − r2rdrd  

2

On the unit disk in the x,y −plane centered at the origin we have n  −k, F  n  −z  0 so


S2

F  dS  
S2

F  nds  0

Thus


S

F  dS  
S

F  nds  
2

Stokes’ Theorem
Let S be a regular surface bounded by a closed curve denoted by ∂S (boundary of S). Let F and curl F
be continuous over S. Then

 
S

curlF  nds   
S
∇  F  nds  

∂S
F  d r

Here the direction of integration around ∂S is positive if the region it encloses is to the left when we go
round it with our head in the direction of n.
Example

Verify that Stokes’ Theorem is true for the vector field F  3yi 4zj− 6xk and S is the part of the
paraboloid z  9 − x2 − y2 that lies above the x,y −plane, oriented upward.
Solution:
9 − x2 − y2

For the line integral: The boundary is the circle z  0,x2  y2  9. We parametrize the circle as
x  3cos,y  3sin, 0 ≤  ≤ 2. Thus
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r  3cosi 3sinj  0k 0 ≤  ≤ 2
Then

r′  −3sini 3cosj

F  r′  9sini 0j− 63cosk  −3sini 3cosj  −27sin2


∂S

F  dr  
0

2
−27sin2d  −27

For the surface

x  rcos, y  r sin, z  9 − r2, 0 ≤  ≤ 2, 0 ≤ r ≤ 3

r, r  rcosi r sinj 9 − r2k

r, r  rcos, r sin, 9 − r2

∂r, r
∂  −r sin, rcos, 0

∂r, r
∂r  cos, sin,−2r

cos, sin,−2r  −r sin, rcos, 0  2r2 cos, 2r2 sin, cos2r  sin2r
So

rr  r  2r2 cosi 2r2 sinj rk

Letting   0, we see that ru  rv  2r2i rk, which points outward since r ≥ 0. Thus we use ru  rv.

F  3y, 4z,−6x ∇  F  −4,6,−3
curlF  rr  r  −4,6,−3  2r2 cos, 2r2 sin, r

 −8r2 cos  12r2 sin − 3r

Thus

 
S

curlF  nds  
0

2 
0

3
−8r2 cos  12r2 sin − 3rdrd  −27

Example: Calculate the work done by the force field

Fx,y, z  xx  z2i yy  x2j zz  y2k

when a particle moves under its influence around the edge of the part of the sphere x2  y2  z2  4 that
lies in the first octant, in a counterclockwise direction as viewed from above.
Solution:

Given the form of F it is clear that evaluating the line integral that gives the work is non-trivial, if not
impossible. We shall use Stokes’ Theorem to evaluate the line integral and hence find the work.

F  xx  z2,yy  x2, zz  y2 ∇  F  2y, 2z, 2x  2yi 2zj 2xk

 
S
∇  F  nds  

∂S
F  d r

First we deal with the surface integral by parametrizing the portion of the sphere in the first octant
using spherical coordinates. Since the sphere has radius 2,   2. Thus

x  2sincos, y  2sin sin, z  2cos 0 ≤  ≤ 
2

, 0 ≤  ≤ 
2
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Note that the limits on  and  come from the fact that we are interested only in the part of the sphere in
the first octant.
As usual

r,  2sincosi  2sin sinj 2cosk

so

r  r  −4sin2cosi− 4sin2 sinj− 4sincosk

This normal points "down" (let   
2 ,  0 so we use −r  r, which points upward.

 
S
∇  F  nds   

S
∇  F  −r  rds

  
S

4sin sini 4cosj 4sincosk  4sin2cosi 4sin2 sinj 4sincosk

 
0


2 

0


2
16sin3 sincos  16cos sin2 sin  16sin2coscosdd  16

The Divergence Theorem
Remark: We shall call a surface S positively oriented if the unit normal n is an outer normal; otherwise,
S is negatively oriented.

Theorem: Suppose S is a regular, positively oriented, closed surface, and that F and div F are
continuous over S and the region V is enclosed by S.

Then

 
S

F  dS   
S

F  nds    
V

divFdv    
V
∇  Fdv

where n is the outward normal to S.

Example: Verify that the Divergence Theorem is true for the vector field F  3xi xyj 2xzk and V is
the cube bounded by the planes x  0,x  1,y  0,y  1, z  0, z  1.
Solution:

Since divF  3  x  2x  3  3x, then

  
V
∇  Fdv  

0

1 
0

1 
0

1
3x  3dxdydz  9

2

There are six faces to the cube.

Face x  0, then n  −i, so F  n  3x  0

Face x  1, then n  i, F  n  3x  3, so 
face x1

F  nds  
face x1

3ds  3 area of face 3

Face y  0,n  −j, F  n  −xy  0

Face y  1,n  j, F  n  xy  x so  
face y1

F  nds  
0

1 
0

1
xdxdz  1

2
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Face z  0,n  −k, F  n  −2xz  0

Face z  1,n  k, F  n  2xz  2x so  
face z1

F  nds  
0

1 
0

1
2xdxdy  1

Thus

 
S

F  nds  0  3  0  1
2
 0  1  9

2

as before.

Example

Use the Divergence Theorem to calculate the surface integral 
S

F  dS where

Fx,y, z  x3i y3j z3k, and S is the sphere x2  y2  z2  1
Solution:

divF  3x2  y2  z2 so


S

F  dS  
V

3x2  y2  z2dV

Switching to spherical coordinates we have since

dV  2 sinddd

and x2  y2  z2  2


S

F  dS  
V

3x2  y2  z2dV

 
0

 
0

2 
0

1
34 sinddd  12

5
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