
Ma 227 Review for Systems of DEs

Matrices

Basic Properties
Addition and subtraction:

Let A  aij mn and B  bij mn. Then

A  B  aij  bij mn

Example:

A 
1 −2 3

0 −1 6
B 

6 4 7

−1 −2 −6

A  B 
1  6 −2  4 3  7

0 − 1 −1 − 2 6 − 6


7 2 10

−1 −3 0

Scaler Multiplication:
Let k be a scalar and A a matrix of real numbers of order m  n. Then

kA  k  aij mn

Example:

5

−1 0 5 7

2 −8 4 22

−7 1 0 6

8 3 −3 4



−5 0 25 35

10 −40 20 110

−35 5 0 30

40 15 −15 20

Some Properties of Addition and Scalar Multiplication
Theorem
Let A, B and C be conformable m  n matrices whose entries are real numbers, and k and p arbitrary scalars. Then
1. A  B  B  A.
2. A  B  C  A  B  C
3. There is an m  n matrix 0 such that 0  A  A for each A.
4. For each A there is an m  n matrix −A such that A  −A  0.
5. kA  B  kA  kB
6. k  pA  kA  pA
7. kpA  kpA.
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4 Note that −1A  −aij mn  A  −1A  0mn

Remark: We denote −1A by −A.

The Transpose of a Matrix
If A is an m  n matrix, the transpose of A, denoted AT, is the n  m matrix whose entry ast is the same as the entry
ats in the matrix A. Thus one gets the transpose of A by interchanging the rows and the columns of A.

Example:

1 0 −1

2 3 −2

4 10 9

T



1 2 4

0 3 10

−1 −2 9

Multiplication:
Definition. Let A  aij mn and B  bij np be matrices. Then A B is the m  p matrix C, where

C  cij mp  ∑
k1

n

aikbkj

mp

Remark. A B ≠ B A necessarily.
Example:

1 −1 0

4 1 −1
23



3 4

−1 −5

1 2
32


13  −1−1  01 14  −1−5  02

43  1−1  −11 44  1−5  −12
22


4 9

10 9
22

The following occur often for matrices.

1. A B ≠ B A
2. A B  0 but neither A  0 or B  0

3. A B  A C but B ≠ C

Theorem
Assume that k is an arbitrary scalar, and that A, B, C and I are matrices of sizes such that the indicated operations
can be performed. Then

1. IA  A, BI  B
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2. ABC  ABC

3. AB  C  AB  AC, AB − C  AB − AC

4. B  CA  BA  CA, B − CA  BA − CA

5. kAB  kAB  AkB

6. ABT  BTAT.

Cramer’s Rule

Cramer’s Rule: Let A be an n  n matrix, A  aij nn and denote by Aj the n  n matrix formed by replacing the
elements aij of the jth column of A by the numbers ki, i  1, . . . . . ,n. If |A| ≠ 0, the system of n linear equations in
n unknowns,

a11x1  a12x2   a1nxn  k1

a21x1  a22x2   a2nxn  k2

  

  

an1x1  an2x2   annxn  kn

has the unique solution

x1 
detA1

detA
x2 

detA2

detA
, . . .xn 

detAn

detA

Example. Solve

x  3y − 2z  1

4x − 2y  z  −15

3x  4y − z  3

by Cramer’s Rule

detA 

1 3 −2

4 −2 1

3 4 −1

 −25
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x 

1 3 −2

−15 −2 1

3 4 −1

−25
 − 14

5
, y 

1 1 −2

4 −15 1

3 3 −1

−25
 19

5
, z 

1 3 1

4 −1 −15

3 4 3

−25
 19

5

Systems of Equations: Elimination Using Matrices

Elementary Row Operations On Matrices I

Equivalent Systems
Two linear systems are equivalent if they have the same solutions.

Three Elementary Operations
Three basic elementary operations are used to transform systems to equivalent systems. These are:

1. Interchanging the order of the equations in the system.

2. Multiplying any equation by a nonzero constant.

3. Replacing any equation in the system by its sum with a nonzero constant multiple of any other
equation in the system (elimination step).

Theorem:
Suppose that an elementary row operation is performed on a system of linear equations. Then the resulting system
has the same set of solutions as the original, so the two systems are equivalent.

Operating on the rows of a matrix is equivalent to operating on equations. The row operations that are allowed are
the same as the row operations on linear systems of equations:
1. Interchanging the rows.
2. Multiplying any row by a nonzero constant.
3. Replacing any row by its sum with a nonzero constant multiple of any other row. (Add a multiple of one row to
a different row.)

Gaussian Elimination

Definition: A matrix is said to be in row-echelon form (and will be called a row-echelon matrix) if it satisfies the
following three conditions:

1. All zero rows (consisting entirely of zeroes) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the leading 1 for that row.

3. Each leading 1 is to the right of all leading 1′s in the rows above it.

Definition: A row-echelon matrix is said to be in reduced row-echelon form (and will be called a reduced
row-echelon matrix) if it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.
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Example:
Reduce the matrix

−1 −1 0 2 −4

0 0 1 −3 0

2 1 0 0 0

2 2 1 −7 8

to row-reduced echelon form.

−1 −1 0 2 −4

0 0 1 −3 0

2 1 0 0 0

2 2 1 −7 8

→2R1R3; 2R1R4

−1 −1 0 2 −4

0 0 1 −3 0

0 −1 0 4 −8

0 0 1 −3 0

→−1R1; −1R3

1 1 0 −2 4

0 0 1 −3 0

0 1 0 −4 8

0 0 1 −3 0

→R3↔R2

1 1 0 −2 4

0 1 0 −4 8

0 0 1 −3 0

0 0 1 −3 0

→−1R3R4

1 1 0 −2 4

0 1 0 −4 8

0 0 1 −3 0

0 0 0 0 0

→−1R2R1

1 0 0 2 −4

0 1 0 −4 8

0 0 1 −3 0

0 0 0 0 0

Example:
Solve the system AX  C, where

A 

−1 −1 0 2

0 0 1 −3

2 1 0 0

2 2 1 −7

, X 

x1

x2

x3

x4

and C 

−4

0

0

8

From the previous example

−1 −1 0 2 −4

0 0 1 −3 0

2 1 0 0 0

2 2 1 −7 8

, row echelon form:

1 0 0 2 −4

0 1 0 −4 8

0 0 1 −3 0

0 0 0 0 0

Thus the solution is: x3  3x4,x1  −2x4 − 4,x2  4x4  8,x4  x4
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Inverse of a Matrix
Definition: If A is a square n  n matrix, a matrix A−1 is called the inverse of A if and only if

AA−1  I  A−1A

A matrix A that has an inverse is called an invertible or nonsingular matrix.

Example:

Find A−1 for A 

2 7 1

1 4 −1

1 3 0

. We form

2 7 1 1 0 0

1 4 −1 0 1 0

1 3 0 0 0 1

2 7 1 1 0 0

1 4 −1 0 1 0

1 3 0 0 0 1

→−2R2R1; −1R2R3

0 −1 3 1 −2 0

1 4 −1 0 1 0

0 −1 1 0 −1 1

→−1R1R3;

0 −1 3 1 −2 0

1 4 −1 0 1 0

0 0 −2 −1 1 1

→4R1R2; − 1
2 R3

0 −1 3 1 −2 0

1 0 11 4 −7 0

0 0 1 1
2
− 1

2
− 1

2

→−3R3R1; −11R3R2

0 −1 0 − 1
2
− 1

2
3
2

1 0 0 − 3
2
− 3

2
11
2

0 0 1 1
2
− 1

2
− 1

2

→ −1R1; R2↔R1

1 0 0 − 3
2
− 3

2
11
2

0 1 0 1
2

1
2
− 3

2

0 0 1 1
2
− 1

2
− 1

2

Thus A−1 

− 3
2
− 3

2
11
2

1
2

1
2
− 3

2

1
2
− 1

2
− 1

2
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Eigenvalues
Definition: The values of  such that detA − I  0 are called eigenvalues. The vector X corresponding to an
eigenvalue is called an eigenvector of the matrix A.
Example Find all eigenvalues and eigenvectors of the matrix

A 

1 1 −2

−1 2 1

0 1 −1

.
Solution:

detA − I  det

1 −  1 −2

−1 2 −  1

0 1 −1 − 

 −2    22 − 3

 −2 − 2   − 2

 1 − 2  − 2

Thus detA − I  0 eigenvalues   −1, 1, 2.
A − IX  0 

1 − x1  x2 − 2x3  0

− x1  2 − x2  x3  0

0x1  x2  −1 − x3  0

  −1

2x1  x2 − 2x3  0

− x1  3x2  x3  0

0x1  x2  0x3  0

Thus x2  0,x1  x3 or

1

0

1

↔ −1. Similarly,

A 

1 1 −2

−1 2 1

0 1 −1

, eigenvectors:

1

3

1

↔ 2,

1

0

1

↔ −1,

3

2

1

Example Repeated Eigenvalues Find the eigenvalues and eigenvectors of

A 

1 −2 4

3 −4 4

3 −2 2

Solution:
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detA − rI 

1 − r −2 4

3 −4 − r 4

3 −2 2 − r

 − r3 − r2  8r  12  −r − 3r  22

Thus the eigenvalues are 3 and −2 and −2 is a repeated eigenvalue with multiplicity two. The system of equations
A − rIX  0 is, for this matrix,

1 − rx1 − 2x2  4x3  0

3x1 − 4  rx2  4x3  0

3x1 − 2x2  2 − rx3  0

Setting r  3 yields

− 2x1 − 2x2  4x3  0

3x1 − 7x2  4x3  0

3x1 − 2x2 − x3  0

The augmented matrix for this system is

−2 −2 4 0

3 −7 4 0

3 −2 −1 0

, row echelon form:

1 0 −1 0

0 1 −1 0

0 0 0 0

so the

solutions of the above system are also the solutions of the system

x1 − x3  0

x2 − x3  0

Thus x1  x2  x3 and an eigenvector corresponding to r  3 is

1

1

1

.

Setting r  −2 in the system A − rIX  0 yields

3x1 − 2x2  4x3  0

3x1 − 2x2  4x3  0

3x1 − 2x2  4x3  0

The augmented matrix for this system is

3 −2 4 0

3 −2 4 0

3 −2 4 0

, row echelon form:

1 − 2
3

4
3

0

0 0 0 0

0 0 0 0

. Thus, we

have the one equation

x1 − 2
3

x2  4
3

x3  0

To get two linearly independent vectors we first take x3  0 and get x1  2
3

x2. Letting x2  1 yields the

eigenvector

2
3

1

0

.

To get a second vector we set x2  0 and get x1  − 4
3

x3. Letting x3  1 yields the eigenvector

− 4
3

0

1

.

Example Complex Eigenvalues Find the eigenvalues and eigenvectors of the matrix A.
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A 

2 −1 0

2 1 1

0 2 1

Solution. We note the following.
If r1    i is a solution of the equation that determines the eigenvalues, namely,

pr  detA − rI  0

then r2   − i is also a solution of this equation, and hence is an eigenvalue. Recall that r2 is called the complex
conjugate of r1 and r 1  r2.
Let z  a  ib, where a and b are real vectors, be an eigenvector corresponding to r1. Then it is not hard to see
that z  a − ib is an eigenvector corresponding to r2. Since

Az r1z r1Iz

then

A − r1Iz  0

Taking the conjugate of this equation and noting that since A and I are real matrices then A  A and I  I

A − r1Iz  A − r 1I z  A − r2I z  0

so z is an eigenvector corresponding to r2.

We find the eigenvalues for matrix A first.

detA − rI 

2 − r −1 0

2 1 − r 1

0 2 1 − r

2 − r −1

2 1 − r

0 2

 2 − r1 − r2 − 212 − r  21 − r

 2 − r1 − 2r  r2  − 2  2 − 2r

 2 − r−1 − 2r  r2   2 − 2r

 −2  r − 4r  2r2  2r2 − r3  2 − 2r

 −5r  4r2 − r3  −rr2 − 4r  5

Clearly one root is r  0. Using the quadratic formula, the others are

r  4  42 − 20
2

 4  −4
2

 2  i

The system of equations for the eigenvectors is

2 − rx1 − x2  0

2x1  1 − rx2  x3  0

2x2  1 − rx3  0

For r  0, we solve

A − 0IX  0

Using elimination on the augmented matrix, we have
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2 −1 0 0

2 1 1 0

0 2 1 0

→

2 −1 0 0

0 2 1 0

0 2 1 0

→

2 −1 0 0

0 2 1 0

0 0 0 0

→

1 −. 5 0 0

0 1 . 5 0

0 0 0 0

→

1 0 . 25 0

0 1 . 5 0

0 0 0 0

Thus x1  − 1
4

x3 and x2  − 1
2

x3 where x3 is arbitrary. Letting x3  4 we have that the eigenvector is any
multiple of

−1

−2

4

Similarly, for r  2  i, we have the following. [The first step is an extra step of multiplying the first row by 2i to
show how this goes.]

−i −1 0 0

2 −1 − i 1 0

0 2 −1 − i 0

→

2 −2i 0 0

2 −1 − i 1 0

0 2 −1 − i 0

→

2 −2i 0 0

0 −1  i 1 0

0 2 −1 − i 0

→

2 −2i 0 0

0 2 −1 − i 0

0 0 0 0

→

2 0 1 − i 0

0 2 −1 − i 0

0 0 0 0

Thus 2x1  −1  ix3 and 2x2  1  ix3. Again, the third component is arbitrary and any multiple of

−1  i

1  i

2

is an eigenvector.
Finally, since the entries in the matrix are all real, both eigenvalues and eigenvectors come in complex conjugate
pairs and for r  2 − i, eigenvectors are multiples of

−1 − i

1 − i

2

.
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Matrix Methods for Linear Systems of Differential Equations

Linear Systems in Normal Form

A system of n linear differential equations is in normal form if it is expressed as

x′t  Atxt  ft

where xt and ft are n  1 column vectors and At  aijtnn.

A system is called homogeneous if ft  0; otherwise it is called nonhomogeneous. When the elements of A are
constants, the system is said to have constant coefficients.
Example Express the equation

y′′′ − 6y′′  11y′ − 6ty  cos t

in normal form

x′t  Atxt  ft

Solution: Defining

x1  y,x2  y′,x3  y′′

we have

x1
′  x2

x2
′  x3

x3
′  6tx1 − 11x2  6x3  cos t

Thus

x 

x1

x2

x3

At 

0 1 0

0 0 1

6t −11 6

and ft 

0

0

cos t

Solving Normal Systems

1. To determine a general solution to the n  n homogeneous system x′  Ax :

a. Find a fundamental solution set x1, . . . . . ,xn that consists of n linearly independent
solutions to the homogeneous equation.

b. Form the linear combination

x  Xc  c1x1   cnxn

where c  colc1, . . . . . ,cn  is any constant vector and X  x1, . . . . . ,xn  is the
fundamental matrix, to obtain a general solution.

Theorem
Suppose the n  n constant matrix A has n linearly independent eigenvectors u1,u2, . . . ,un. Let ri be the
eigenvalue corresponding to the ui. Then

er1tu1,er2tu2, . . . . ,erntun
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is a fundamental solution set on −, for the homogeneous system x′  Ax. Hence the general solution of
x′  Ax is

xt  c1er1tu1   cnerntun

where c1, . . . . ,cn are arbitrary constants.

Example Find a general solution of

x′ 
5 4

−1 0
x

5 4

−1 0
, eigenvectors:

−1

1
↔ 1,

−4

1
↔ 4

Thus xt  c1et −1

1
 c2e4t −4

1

Thus the solution is

x1t  −c1et − 4c2e4t

x2t  c1et  c2e4t

Example Find a fundamental matrix for the system

x′t 

2 1 1 −1

0 −1 0 1

0 0 3 1

0 0 0 7

xt

Solution:

2 1 1 −1

0 −1 0 1

0 0 3 1

0 0 0 7

, eigenvectors:

1

−3

0

0

↔ −1,

1

0

0

0

↔ 2,

−1

1

2

8

↔ 7,

1

0

1

0

↔ 3

Hence the four linearly independent solutions are
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e−t

1

−3

0

0

,e2t

1

0

0

0

,e7t

−1

1

2

8

,e3t

1

0

1

0

Therefore a fundamental matrix is

e−t e2t −e7t e3t

−3e−t 0 e7t 0

0 0 2e7t e3t

0 0 8e7t 0

Example Solve the initial value problem

x′t 

2 1 1 −1

0 −1 0 1

0 0 3 1

0 0 0 7

xt

x0 

1

−1

1

0

We know from above that the solution general solution to the system is

xt  c1e−t

1

−3

0

0

 c2e2t

1

0

0

0

 c3e7t

−1

1

2

8

 c4e3t

1

0

1

0

xt 

c1e−t  c2e2t − c3e7t  c4e3t

−3c1e−t  c3e7t

2c3e7t  c4e3t

8c3e7t

Then

x0 

c1  c2 − c3  c4

−3c1  c3

2c3  c4

8c3



1

−1

1

0

. Therefore we must solve the system
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c1  c2 − c3  c4  1

−3c1  c3  −1

2c3  c4  1

8c3  0

, Solution is: c3  0,c4  1,c1  1
3

,c2  − 1
3

,and xt 

1
3

e−t − 1
3

e2t  e3t

−e−t

e3t

0

Complex Eigenvalues
Consider

x′t  Axt     ∗

in the case where A is a real matrix and the eigenvalues are complex. Denoting the eigenvalues by   i, let
z  a  ib, where a and b are real vectors, be an eigenvector corresponding to the eigenvector r1. Then

x1t  etcosta − sintb

x2t  etsinta costb

are two real linearly independent solutions of the system ∗.
Example Find the general solution of

x′t 
2 −4

2 −2
xt

Solution: This is problem 1 on page 573 of our DEs text and was assigned for homework.
Eigenvalues:

detA − rI 
2 − r −4

2 −2 − r
 r2  4  0  r  2i    i, so  0,  2

Eigenvectors:
r  2i :

2 − 2i −4

2 −2 − 2i

u1

u2


0

0


2 − 2i −4 0

2 −2 − 2i 0

R1 says 2 − 2iu1  4u2  u2  2 − 2i
4

u1  1
2
− i

2
u1. Let u1  s;

then u 
s

1
2
− i

2
s

 s
1
1
2

 is
0

− 1
2

. Let s  2 :



u 
2

1
 i

0

−1
 a  ib.

So the general solution is

xt  c1 e0t cos2t
2

1
− e0t sin2t

0

−1
 c2 e0t sin2t

2

1
 e0t cos2t

0

−1

 c1
2cos2t

cos2t  sin t2t
 c2

2 sin2t

sin2t − cos2t

Nonhomogeneous Systems
Undetermined Coefficients
Consider the nonhomogeneous constant coefficient system
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x′t  Axt  ft

Example Find the general solution of

x′t 

1 −2 2

−2 1 2

2 2 1

xt 

2et

4et

−2et

Solution:
We first find the homogeneous solution.

1 −2 2

−2 1 2

2 2 1

, eigenvectors:

−1

−1

1

↔ −3,

−1

1

0

,

1

0

1

↔ 3

Since these eigenvectors are linearly independent, then

xht  c1e−3t

−1

−1

1

 c2e3t

−1

1

0

 c3e3t

1

0

1

We seek a particular solution of the form

xpt  et

a1

a2

a3

Then

xp
′ t  et

a1

a2

a3

 Axpt 

2et

4et

−2et

 et

1 −2 2

−2 1 2

2 2 1

a1

a2

a3



2et

4et

−2et

 et

a1 − 2a2  2a3

−2a1  a2  2a3

2a1  2a2  a3



2

4

−2

Thus

a1  a1 − 2a2  2a3  2

a2  −2a1  a2  2a3  4

a3  2a1  2a2  a3 − 2

Or

2a2 − 2a3  2

2a1 − 2a3  4

2a1  2a2  2

Solution is: a2  0,a1  1,a3  −1

Therefore
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xpt  et

1

0

−1

and

xt  xht  xpt  c1e−3t

−1

−1

1

 c2e3t

−1

1

0

 c3e3t

1

0

1

 et

1

0

−1

Example a) Find the eigenvalues and eigenvectors of

A 
2 −1

1 2
.

Solution: We solve detA − rI  0.

detA − rI 
2 − r −1

1 2 − r

 2 − r2  1

2 − r2  −1

2 − r  i

r  2  i

So, the eigenvalues are a complex conjugate pair. We find the eigenvector for one and take the complex
conjugate to get the other. For r  2  i, we solve

A − rIu  0

−i −1

1 −i

u1

u2


0

0

Thus we have the equations

− iu1 − u2  0

u1 − iu2  0

The second row is redundant, so −iu1 − u2  0 or u2  −i  u1. Hence any multiple of
1

−i
is an eigenvector

for r  2  i. Then an eigenvector

corresponding to r  2 − i is
1

i
.

b) Find the [real] general solution to

x1
′

x2
′


2 −1

1 2

x1

x2


0

12e2t
.

Solution: The solution is the general solution xh  to the homogeneous equation plus one [particular] solution
xp  to the full non-homogeneous equation. First we’ll find xp. It is in the form

xp 
c1e2t

c2e2t

Substituting into the D.E., we obtain
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x1
′

x2
′


2c1e2t

2c2e2t


2 −1

1 2

c1e2t

c2e2t


0

12e2t

Hence

2c1e2t

2c2e2t


2c1e2t − c2e2t

c1e2t  2c2e2t


0

12e2t


2c1e2t − c2e2t

c1e2t  2c2e2t  12e2t

We can divide by e2t (which is never zero) and move the unknowns to the left side to obtain

−c2

−c1


0

12

xp 
−12e2t

0

b) Find the [real] general solution to

x1
′

x2
′


2 −1

1 2

x1

x2


0

12e2t
.

To find a solution to the homogeneous solution we use the eigenvalue 2  i    i and the corresponding

eigenvector
1

−i


1

0
 i

0

−1
 a  ib.

Since

x1t  etcosta − sintb

x2t  etsinta costb

then

x1t  e2t cos t
1

0
− sin t

0

−1

x2t  e2t sin t
1

0
cos t

0

−1

Hence

xht  c1x1t  c2x2t

 c1
e2t cos t

e2t sin t
 c2

e2t sin t

−e2t cos t

Or, for the solution to the homogeneous equation, we may use one of the eigenvalues and eigenvectors found in 2a
to write a complex solution and break it into real and imaginary parts. We’ll use 2  i.
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x  e2it 1

−i
 e2tcos t  i sin t

1

−i


e2t cos t  ie2t sin t

e2t sin t − ie2t cos t

xh  c1
e2t cos t

e2t sin t
 c2

e2t sin t

−e2t cos t


e2t cos t e2t sin t

e2t sin t −e2t cos t

c1

c2

Finally, we add to obtain the desired solution.

x 
e2t cos t e2t sin t

e2t sin t −e2t cos t

c1

c2


−12e2t

0
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