Ma 227 Review for Systems of DEs

Matrices

Basic Properties

Addition and subtraction:

Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then

$$
A \pm B=\left[a_{i j} \pm b_{i j}\right]_{m \times n}
$$

Example:

$A=\left[\begin{array}{lll}1 & -2 & 3 \\ 0 & -1 & 6\end{array}\right] \quad B=\left[\begin{array}{ccc}6 & 4 & 7 \\ -1 & -2 & -6\end{array}\right]$

$$
A+B=\left[\begin{array}{lll}
1+6 & -2+4 & 3+7 \\
0-1 & -1-2 & 6-6
\end{array}\right]=\left[\begin{array}{lll}
7 & 2 & 10 \\
-1 & -3 & 0
\end{array}\right]
$$

Scaler Multiplication:

Let k be a scalar and A a matrix of real numbers of order $m \times n$. Then

$$
k A=\left[k \cdot a_{i j}\right]_{m \times n}
$$

Example:

$$
5\left[\begin{array}{cccc}
-1 & 0 & 5 & 7 \\
2 & -8 & 4 & 22 \\
-7 & 1 & 0 & 6 \\
8 & 3 & -3 & 4
\end{array}\right]=\left[\begin{array}{cccc}
-5 & 0 & 25 & 35 \\
10 & -40 & 20 & 110 \\
-35 & 5 & 0 & 30 \\
40 & 15 & -15 & 20
\end{array}\right]
$$

Some Properties of Addition and Scalar Multiplication

Theorem

Let A, B and C be conformable $m \times n$ matrices whose entries are real numbers, and k and p arbitrary scalars. Then

1. $A+B=B+A$.
2. $A+(B+C)=(A+B)+C$
3. There is an $m \times n$ matrix 0 such that $0+A=A$ for each A.
4. For each A there is an $m \times n$ matrix $-A$ such that $A+(-A)=0$.
5. $k(A+B)=k A+k B$
6. $(k+p) A=k A+p A$
7. $(k p) A=k(p A)$.
(4) Note that (-1)A $=\left[-a_{i j}\right]_{m \times n} \quad \Rightarrow A+(-1) A=0_{m \times n}$

Remark: We denote (-1)A by $-A$.

The Transpose of a Matrix

If A is an $m \times n$ matrix, the transpose of A, denoted A^{T}, is the $n \times m$ matrix whose entry $a_{s t}$ is the same as the entry $a_{t s}$ in the matrix A. Thus one gets the transpose of A by interchanging the rows and the columns of A.

Example:

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 3 & -2 \\
4 & 10 & 9
\end{array}\right]^{T}=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 3 & 10 \\
-1 & -2 & 9
\end{array}\right]
$$

Multiplication:

Definition. Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times p}$ be matrices. Then $A B$ is the $m \times p$ matrix C, where

$$
C=\left[c_{i j}\right]_{m \times p}=\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]_{m \times p}
$$

Remark. $A B \neq B A$ necessarily.
Example:
$\left[\begin{array}{lll}1 & -1 & 0 \\ 4 & 1 & -1\end{array}\right]_{2 \times 3} \times\left[\begin{array}{ll}3 & 4 \\ -1 & -5 \\ 1 & 2\end{array}\right]_{3 \times 2}$
$=\left[\begin{array}{ll}(1)(3)+(-1)(-1)+(0)(1) & (1)(4)+(-1)(-5)+(0)(2) \\ (4)(3)+(1)(-1)+(-1)(1) & (4)(4)+(1)(-5)+(-1)(2)\end{array}\right]_{2 \times 2}$

$$
=\left[\begin{array}{cc}
4 & 9 \\
10 & 9
\end{array}\right]_{2 \times 2}
$$

The following occur often for matrices.

1. $A B \neq B A$
2. $A B=0$ but neither $A=0$ or $B=0$
3. $A B=A C$ but $B \neq C$

Theorem

Assume that k is an arbitrary scalar, and that A, B, C and I are matrices of sizes such that the indicated operations can be performed. Then

1. $I A=A, \quad B I=B$
2. $A(B C)=(A B) C$
3. $A(B+C)=A B+A C, \quad A(B-C)=A B-A C$
4. $(B+C) A=B A+C A, \quad(B-C) A=B A-C A$
5. $k(A B)=(k A) B=A(k B)$
6. $(A B)^{T}=B^{T} A^{T}$.

Cramer's Rule

Cramer's Rule: Let A be an $n \times n$ matrix, $A=\left[a_{i j}\right]_{n \times n}$ and denote by $A_{(j)}$ the $n \times n$ matrix formed by replacing the elements $a_{i j}$ of the jth column of A by the numbers $k_{i}, i=1, \ldots \ldots, n$. If $|A| \neq 0$, the system of n linear equations in n unknowns,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =k_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =k_{2} \\
\vdots & =\vdots \\
\vdots & =\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =k_{n}
\end{aligned}
$$

has the unique solution

$$
x_{1}=\frac{\operatorname{det} A_{(1)}}{\operatorname{det} A} \quad x_{2}=\frac{\operatorname{det} A_{(2)}}{\operatorname{det} A}, \ldots x_{n}=\frac{\operatorname{det} A_{(n)}}{\operatorname{det} A}
$$

Example. Solve

$$
\begin{aligned}
& x+3 y-2 z=1 \\
& 4 x-2 y+z=-15 \\
& 3 x+4 y-z=3
\end{aligned}
$$

by Cramer’s Rule

$$
\operatorname{det} A=\left|\begin{array}{lll}
1 & 3 & -2 \\
4 & -2 & 1 \\
3 & 4 & -1
\end{array}\right|=-25
$$

$$
x=\frac{\left|\begin{array}{lll}
1 & 3 & -2 \\
-15 & -2 & 1 \\
3 & 4 & -1
\end{array}\right|}{-25}=-\frac{14}{5}, \quad y=\frac{\left|\begin{array}{lll}
1 & 1 & -2 \\
4 & -15 & 1 \\
3 & 3 & -1
\end{array}\right|}{-25}=\frac{19}{5}, \quad z=\frac{\left|\begin{array}{lll}
1 & 3 & 1 \\
4 & -1 & -15 \\
3 & 4 & 3
\end{array}\right|}{-25}=\frac{19}{5}
$$

Systems of Equations: Elimination Using Matrices

Elementary Row Operations On Matrices I

Equivalent Systems

Two linear systems are equivalent if they have the same solutions.

Three Elementary Operations

Three basic elementary operations are used to transform systems to equivalent systems. These are:

1. Interchanging the order of the equations in the system.
2. Multiplying any equation by a nonzero constant.
3. Replacing any equation in the system by its sum with a nonzero constant multiple of any other equation in the system (elimination step).

Theorem:

Suppose that an elementary row operation is performed on a system of linear equations. Then the resulting system has the same set of solutions as the original, so the two systems are equivalent.

Operating on the rows of a matrix is equivalent to operating on equations. The row operations that are allowed are the same as the row operations on linear systems of equations:

1. Interchanging the rows.
2. Multiplying any row by a nonzero constant.
3. Replacing any row by its sum with a nonzero constant multiple of any other row. (Add a multiple of one row to a different row.)

Gaussian Elimination

Definition: A matrix is said to be in row-echelon form (and will be called a row-echelon matrix) if it satisfies the following three conditions:

1. All zero rows (consisting entirely of zeroes) are at the bottom.
2. The first nonzero entry from the left in each nonzero row is a 1 , called the leading 1 for that row.
3. Each leading 1 is to the right of all leading $1^{\prime} s$ in the rows above it.

Definition: A row-echelon matrix is said to be in reduced row-echelon form (and will be called a reduced row-echelon matrix) if it satisfies the following condition:
4. Each leading 1 is the only nonzero entry in its column.

Example:

Reduce the matrix

$$
\left[\begin{array}{lllll}
-1 & -1 & 0 & 2 & -4 \\
0 & 0 & 1 & -3 & 0 \\
2 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & -7 & 8
\end{array}\right]
$$

to row-reduced echelon form.
$\left[\begin{array}{lllll}-1 & -1 & 0 & 2 & -4 \\ 0 & 0 & 1 & -3 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 2 & 2 & 1 & -7 & 8\end{array}\right] \rightarrow^{(2) R_{1}+R_{3} ;(2) R_{1}+R_{4}}\left[\begin{array}{lllll}-1 & -1 & 0 & 2 & -4 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & -1 & 0 & 4 & -8 \\ 0 & 0 & 1 & -3 & 0\end{array}\right]$
$\rightarrow^{(-1) R_{1} ;(-1) R_{3}}\left[\begin{array}{ccccc}1 & 1 & 0 & -2 & 4 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 1 & 0 & -4 & 8 \\ 0 & 0 & 1 & -3 & 0\end{array}\right]$
$\rightarrow^{R_{3} \leftrightarrow R_{2}}\left[\begin{array}{ccccc}1 & 1 & 0 & -2 & 4 \\ 0 & 1 & 0 & -4 & 8 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 1 & -3 & 0\end{array}\right] \rightarrow^{(-1) R_{3}+R_{4}}\left[\begin{array}{ccccc}1 & 1 & 0 & -2 & 4 \\ 0 & 1 & 0 & -4 & 8 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\rightarrow^{(-1) R_{2}+R_{1}}\left[\begin{array}{lllll}1 & 0 & 0 & 2 & -4 \\ 0 & 1 & 0 & -4 & 8 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Example:

Solve the system $A X=C$, where
$A=\left[\begin{array}{llll}-1 & -1 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 2 & 1 & 0 & 0 \\ 2 & 2 & 1 & -7\end{array}\right], \quad X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ and $C=\left[\begin{array}{l}-4 \\ 0 \\ 0 \\ 8\end{array}\right]$
From the previous example
$\left[\begin{array}{lllll}-1 & -1 & 0 & 2 & -4 \\ 0 & 0 & 1 & -3 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 2 & 2 & 1 & -7 & 8\end{array}\right]$, row echelon form: $\left[\begin{array}{ccccc}1 & 0 & 0 & 2 & -4 \\ 0 & 1 & 0 & -4 & 8 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Thus the solution is: $\left\{x_{3}=3 x_{4}, x_{1}=-2 x_{4}-4, x_{2}=4 x_{4}+8, x_{4}=x_{4}\right\}$

Inverse of a Matrix

Definition: If A is a square $n \times n$ matrix, a matrix A^{-1} is called the inverse of A if and only if

$$
A A^{-1}=I=A^{-1} A
$$

A matrix A that has an inverse is called an invertible or nonsingular matrix.

Example:

Find A^{-1} for $A=\left[\begin{array}{ccc}2 & 7 & 1 \\ 1 & 4 & -1 \\ 1 & 3 & 0\end{array}\right]$. We form $\left[\begin{array}{cccccc}2 & 7 & 1 & 1 & 0 & 0 \\ 1 & 4 & -1 & 0 & 1 & 0 \\ 1 & 3 & 0 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{cccccc}2 & 7 & 1 & 1 & 0 & 0 \\ 1 & 4 & -1 & 0 & 1 & 0 \\ 1 & 3 & 0 & 0 & 0 & 1\end{array}\right] \rightarrow^{(-2) R_{2}+R_{1} ;}(-1) R_{2}+R_{3}\left[\begin{array}{cccccc}0 & -1 & 3 & 1 & -2 & 0 \\ 1 & 4 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & -1 & 1\end{array}\right]$
$\rightarrow \rightarrow^{(-1) R_{1}+R_{3} ;}\left[\begin{array}{cccccc}0 & -1 & 3 & 1 & -2 & 0 \\ 1 & 4 & -1 & 0 & 1 & 0 \\ 0 & 0 & -2 & -1 & 1 & 1\end{array}\right]$

$\rightarrow(-1) R_{1} ; R_{2} \leftrightarrow R_{1}\left[\begin{array}{cccccc}1 & 0 & 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{11}{2} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}\end{array}\right]$

Thus $A^{-1}=\left[\begin{array}{rrr}-\frac{3}{2} & -\frac{3}{2} & \frac{11}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}\end{array}\right]$

Eigenvalues

Definition: The values of λ such that $\operatorname{det}(A-\lambda I)=0$ are called eigenvalues. The vector X corresponding to an eigenvalue is called an eigenvector of the matrix A.
Example Find all eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & -2 \\
-1 & 2-\lambda & 1 \\
0 & 1 & -1-\lambda
\end{array}\right] \\
& =-2+\lambda+2 \lambda^{2}-\lambda^{3} \\
& =-\lambda^{2}(\lambda-2)+(\lambda-2) \\
& =\left(1-\lambda^{2}\right)(\lambda-2)
\end{aligned}
$$

Thus $\operatorname{det}(A-\lambda I)=0 \Rightarrow$ eigenvalues $\lambda=-1,1,2$.
$(A-\lambda I) X=0 \Rightarrow$

$$
\begin{aligned}
(1-\lambda) x_{1}+x_{2}-2 x_{3} & =0 \\
-x_{1}+(2-\lambda) x_{2}+x_{3} & =0 \\
0 x_{1}+x_{2}+(-1-\lambda) x_{3} & =0
\end{aligned}
$$

$\lambda=-1$

$$
\begin{aligned}
2 x_{1}+x_{2}-2 x_{3} & =0 \\
-x_{1}+3 x_{2}+x_{3} & =0 \\
0 x_{1}+x_{2}+0 x_{3} & =0
\end{aligned}
$$

Thus $x_{2}=0, x_{1}=x_{3}$ or $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \leftrightarrow-1$. Similarly,

$$
A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right], \text { eigenvectors: }\left\{\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]\right\} \leftrightarrow 2,\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} \leftrightarrow-1,\left\{\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\}
$$

Example Repeated Eigenvalues Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{lll}
1 & -2 & 4 \\
3 & -4 & 4 \\
3 & -2 & 2
\end{array}\right]
$$

Solution:

$$
\operatorname{det}(A-r I)=\left|\begin{array}{lll}
1-r & -2 & 4 \\
3 & -4-r & 4 \\
3 & -2 & 2-r
\end{array}\right|=-r^{3}-r^{2}+8 r+12=-(r-3)(r+2)^{2}
$$

Thus the eigenvalues are 3 and -2 and -2 is a repeated eigenvalue with multiplicity two. The system of equations $(A-r I) X=0$ is, for this matrix,

$$
\begin{aligned}
& (1-r) x_{1}-2 x_{2}+4 x_{3}=0 \\
& 3 x_{1}-(4+r) x_{2}+4 x_{3}=0 \\
& 3 x_{1}-2 x_{2}+(2-r) x_{3}=0
\end{aligned}
$$

Setting $r=3$ yields

$$
\begin{array}{r}
-2 x_{1}-2 x_{2}+4 x_{3}=0 \\
3 x_{1}-7 x_{2}+4 x_{3}=0 \\
3 x_{1}-2 x_{2}-x_{3}=0
\end{array}
$$

The augmented matrix for this system is $\left[\begin{array}{cccc}-2 & -2 & 4 & 0 \\ 3 & -7 & 4 & 0 \\ 3 & -2 & -1 & 0\end{array}\right]$, row echelon form: $\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ so the
solutions of the above system are also the solutions of the system

$$
\begin{aligned}
& x_{1}-x_{3}=0 \\
& x_{2}-x_{3}=0
\end{aligned}
$$

Thus $x_{1}=x_{2}=x_{3}$ and an eigenvector corresponding to $r=3$ is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Setting $r=-2$ in the system $(A-r I) X=0$ yields

$$
\begin{aligned}
& 3 x_{1}-2 x_{2}+4 x_{3}=0 \\
& 3 x_{1}-2 x_{2}+4 x_{3}=0 \\
& 3 x_{1}-2 x_{2}+4 x_{3}=0
\end{aligned}
$$

The augmented matrix for this system is $\left[\begin{array}{cccc}3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0\end{array}\right]$, row echelon form: $\left[\begin{array}{cccc}1 & -\frac{2}{3} & \frac{4}{3} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Thus, we have the one equation

$$
x_{1}-\frac{2}{3} x_{2}+\frac{4}{3} x_{3}=0
$$

To get two linearly independent vectors we first take $x_{3}=0$ and get $x_{1}=\frac{2}{3} x_{2}$. Letting $x_{2}=1$ yields the eigenvector $\left[\begin{array}{l}\frac{2}{3} \\ 1 \\ 0\end{array}\right]$.
To get a second vector we set $x_{2}=0$ and get $x_{1}=-\frac{4}{3} x_{3}$. Letting $x_{3}=1$ yields the eigenvector $\left[\begin{array}{c}-\frac{4}{3} \\ 0 \\ 1\end{array}\right]$.

Example Complex Eigenvalues Find the eigenvalues and eigenvectors of the matrix A.

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
2 & 1 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

Solution. We note the following.
If $r_{1}=\alpha+i \beta$ is a solution of the equation that determines the eigenvalues, namely,

$$
p(r)=\operatorname{det}(A-r I)=0
$$

then $r_{2}=\alpha-i \beta$ is also a solution of this equation, and hence is an eigenvalue. Recall that r_{2} is called the complex conjugate of r_{1} and $\bar{r}_{1}=r_{2}$.
Let $\mathbf{z}=\mathbf{a}+i \mathbf{b}$, where \mathbf{a} and \mathbf{b} are real vectors, be an eigenvector corresponding to r_{1}. Then it is not hard to see that $\overline{\mathbf{z}}=\mathbf{a}-i \mathbf{b}$ is an eigenvector corresponding to r_{2}. Since

$$
A \mathbf{z}=r_{1} \mathbf{z}=r_{1} I \mathbf{z}
$$

then

$$
\left(A-r_{1} I\right) \mathbf{z}=0
$$

Taking the conjugate of this equation and noting that since A and I are real matrices then $\bar{A}=A$ and $\bar{I}=I$

$$
\overline{\left(A-r_{1} I\right) \mathbf{z}}=\left(A-\bar{r}_{1} I\right) \overline{\mathbf{z}}=\left(A-r_{2} I\right) \overline{\mathbf{z}}=0
$$

so $\overline{\mathbf{Z}}$ is an eigenvector corresponding to r_{2}.

We find the eigenvalues for matrix A first.

$$
\begin{aligned}
\operatorname{det}(A-r I) & =\left\lvert\, \begin{array}{ccc|cc}
2-r & -1 & 0 & 2-r & -1 \\
2 & 1-r & 1 & 2 & 1-r \\
0 & 2 & 1-r & 0 & 2
\end{array}\right. \\
& =(2-r)(1-r)^{2}-2(1)(2-r)+2(1-r) \\
& =(2-r)\left[\left(1-2 r+r^{2}\right)-2\right]+2-2 r \\
& =(2-r)\left(-1-2 r+r^{2}\right)+2-2 r \\
& =-2+r-4 r+2 r^{2}+2 r^{2}-r^{3}+2-2 r \\
& =-5 r+4 r^{2}-r^{3}=-r\left(r^{2}-4 r+5\right)
\end{aligned}
$$

Clearly one root is $r=0$. Using the quadratic formula, the others are

$$
\begin{aligned}
r & =\frac{4 \pm \sqrt{4^{2}-20}}{2}=\frac{4 \pm \sqrt{-4}}{2} \\
& =2 \pm i
\end{aligned}
$$

The system of equations for the eigenvectors is

$$
\begin{aligned}
(2-r) x_{1}-x_{2} & =0 \\
2 x_{1}+(1-r) x_{2}+x_{3} & =0 \\
2 x_{2}+(1-r) x_{3} & =0
\end{aligned}
$$

For $r=0$, we solve

$$
(A-0 I) X=0
$$

Using elimination on the augmented matrix, we have

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right]}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow+
$$

Thus $x_{1}=-\frac{1}{4} x_{3}$ and $x_{2}=-\frac{1}{2} x_{3}$ where x_{3} is arbitrary. Letting $x_{3}=4$ we have that the eigenvector is any multiple of

$$
\left[\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right]
$$

Similarly, for $r=2+i$, we have the following. [The first step is an extra step of multiplying the first row by $2 i$ to show how this goes.]

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-i & -1 & 0 & 0 \\
2 & -1-i & 1 & 0 \\
0 & 2 & -1-i & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & -2 i & 0 & 0 \\
2 & -1-i & 1 & 0 \\
0 & 2 & -1-i & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & -2 i & 0 & 0 \\
0 & -1+i & 1 & 0 \\
0 & 2 & -1-i & 0
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{cccc}
2 & -2 i & 0 & 0 \\
0 & 2 & -1-i & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & 0 & 1-i & 0 \\
0 & 2 & -1-i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Thus $2 x_{1}=(-1+i) x_{3}$ and $2 x_{2}=(1+i) x_{3}$. Again, the third component is arbitrary and any multiple of

$$
\left[\begin{array}{c}
-1+i \\
1+i \\
2
\end{array}\right]
$$

is an eigenvector.
Finally, since the entries in the matrix are all real, both eigenvalues and eigenvectors come in complex conjugate pairs and for $r=2-i$, eigenvectors are multiples of

$$
\left[\begin{array}{c}
-1-i \\
1-i \\
2
\end{array}\right]
$$

Matrix Methods for Linear Systems of Differential Equations

Linear Systems in Normal Form

A system of n linear differential equations is in normal form if it is expressed as

$$
x^{\prime}(t)=A(t) x(t)+f(t)
$$

where $x(t)$ and $f(t)$ are $n \times 1$ column vectors and $A(t)=\left[a_{i j}(t)\right]_{n \times n}$.
A system is called homogeneous if $f(t)=0$; otherwise it is called nonhomogeneous. When the elements of A are constants, the system is said to have constant coefficients.
Example Express the equation

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 t y=\cos t
$$

in normal form

$$
x^{\prime}(t)=A(t) x(t)+f(t)
$$

Solution: Defining

$$
x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}
$$

we have

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=6 t x_{1}-11 x_{2}+6 x_{3}+\cos t
\end{aligned}
$$

Thus

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad A(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 t & -11 & 6
\end{array}\right] \text { and } f(t)=\left[\begin{array}{c}
0 \\
0 \\
\cos t
\end{array}\right]
$$

Solving Normal Systems

1. To determine a general solution to the $n \times n$ homogeneous system $x^{\prime}=A x$:
a. Find a fundamental solution set $\left\{x_{1}, \ldots, ., x_{n}\right\}$ that consists of n linearly independent solutions to the homogeneous equation.
b. Form the linear combination

$$
x=X c=c_{1} x_{1}+\cdots+c_{n} x_{n}
$$

where $c=\operatorname{col}\left(c_{1}, \ldots ., c_{n}\right)$ is any constant vector and $X=\left[x_{1}, \ldots, x_{n}\right]$ is the fundamental matrix, to obtain a general solution.

Theorem

Suppose the $n \times n$ constant matrix A has n linearly independent eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$. Let r_{i} be the eigenvalue corresponding to the u_{i}. Then

$$
\left\{e^{r_{1} t} u_{1}, e^{r_{2} t} u_{2}, \ldots, e^{r_{n} t} u_{n}\right\}
$$

is a fundamental solution set on $(-\infty, \infty)$ for the homogeneous system $x^{\prime}=A x$. Hence the general solution of $x^{\prime}=A x$ is

$$
x(t)=c_{1} e^{r_{1} t} u_{1}+\cdots+c_{n} e^{r_{n} t} u_{n}
$$

where c_{1}, \ldots, c_{n} are arbitrary constants.

Example Find a general solution of

$$
\begin{aligned}
& x^{\prime}=\left[\begin{array}{cc}
5 & 4 \\
-1 & 0
\end{array}\right] x \\
& {\left[\begin{array}{cc}
5 & 4 \\
-1 & 0
\end{array}\right] \text {, eigenvectors: }\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \leftrightarrow 1,\left\{\left[\begin{array}{c}
-4 \\
1
\end{array}\right]\right\} \leftrightarrow 4} \\
& \text { Thus } x(t)=c_{1} e^{t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
\end{aligned}
$$

Thus the solution is

$$
\begin{aligned}
& x_{1}(t)=-c_{1} e^{t}-4 c_{2} e^{4 t} \\
& x_{2}(t)=c_{1} e^{t}+c_{2} e^{4 t}
\end{aligned}
$$

Example Find a fundamental matrix for the system

$$
x^{\prime}(t)=\left[\begin{array}{cccc}
2 & 1 & 1 & -1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 7
\end{array}\right] x(t)
$$

Solution:
$\left[\begin{array}{cccc}2 & 1 & 1 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 7\end{array}\right]$, eigenvectors: $\left\{\left[\begin{array}{c}1 \\ -3 \\ 0 \\ 0\end{array}\right]\right\} \leftrightarrow-1,\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right\} \leftrightarrow 2,\left\{\left[\begin{array}{c}-1 \\ 1 \\ 2 \\ 8\end{array}\right]\right\} \leftrightarrow 7$,
$\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]\right\} \leftrightarrow 3$
Hence the four linearly independent solutions are
$e^{-t}\left[\begin{array}{c}1 \\ -3 \\ 0 \\ 0\end{array}\right], e^{2 t}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], e^{7 t}\left[\begin{array}{c}-1 \\ 1 \\ 2 \\ 8\end{array}\right], e^{3 t}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$
Therefore a fundamental matrix is

$$
\left[\begin{array}{cccc}
e^{-t} & e^{2 t} & -e^{7 t} & e^{3 t} \\
-3 e^{-t} & 0 & e^{7 t} & 0 \\
0 & 0 & 2 e^{7 t} & e^{3 t} \\
0 & 0 & 8 e^{7 t} & 0
\end{array}\right]
$$

Example Solve the initial value problem

$$
\begin{gathered}
x^{\prime}(t)=\left[\begin{array}{cccc}
2 & 1 & 1 & -1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 7
\end{array}\right] x(t) \\
x(0)=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]
\end{gathered}
$$

We know from above that the solution general solution to the system is

$$
\begin{aligned}
& x(t)=c_{1} e^{-t}\left[\begin{array}{c}
1 \\
-3 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+c_{3} e^{7 t}\left[\begin{array}{c}
-1 \\
1 \\
2 \\
8
\end{array}\right]+c_{4} e^{3 t}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] \\
& x(t)=\left[\begin{array}{c}
c_{1} e^{-t}+c_{2} e^{2 t}-c_{3} e^{7 t}+c_{4} e^{3 t} \\
-3 c_{1} e^{-t}+c_{3} e^{7 t} \\
2 c_{3} e^{7 t}+c_{4} e^{3 t} \\
8 c_{3} e^{7 t}
\end{array}\right]
\end{aligned}
$$

Then

$$
x(0)=\left[\begin{array}{c}
c_{1}+c_{2}-c_{3}+c_{4} \\
-3 c_{1}+c_{3} \\
2 c_{3}+c_{4} \\
8 c_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]
$$

. Therefore we must solve the system

$$
\begin{gathered}
c_{1}+c_{2}-c_{3}+c_{4}=1 \\
-3 c_{1}+c_{3}=-1 \\
2 c_{3}+c_{4}=1 \\
8 c_{3}=0
\end{gathered} \quad \text {, Solution is: }\left\{c_{3}=0, c_{4}=1, c_{1}=\frac{1}{3}, c_{2}=-\frac{1}{3}\right\}, \text { and } x(t)=\left[\begin{array}{c}
\frac{1}{3} e^{-t}-\frac{1}{3} e^{2 t}+e^{3 t} \\
-e^{-t} \\
e^{3 t} \\
0
\end{array}\right]
$$

Complex Eigenvalues

Consider

$$
\begin{equation*}
x^{\prime}(t)=A x(t) \tag{*}
\end{equation*}
$$

in the case where A is a real matrix and the eigenvalues are complex. Denoting the eigenvalues by $\alpha \pm i \beta$, let $\mathbf{z}=\mathbf{a}+i \mathbf{b}$, where \mathbf{a} and \mathbf{b} are real vectors, be an eigenvector corresponding to the eigenvector r_{1}. Then

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{\alpha t}(\cos \beta t \mathbf{a}-\sin \beta t \mathbf{b}) \\
& \mathbf{x}_{2}(t)=e^{\alpha t}(\sin \beta t \mathbf{a}+\cos \beta t \mathbf{b})
\end{aligned}
$$

are two real linearly independent solutions of the system $(*)$.
Example Find the general solution of

$$
x^{\prime}(t)=\left[\begin{array}{ll}
2 & -4 \\
2 & -2
\end{array}\right] x(t)
$$

Solution: This is problem 1 on page 573 of our DEs text and was assigned for homework.
Eigenvalues:

$$
\operatorname{det}(A-r I)=\left|\begin{array}{cc}
2-r & -4 \\
2 & -2-r
\end{array}\right|=r^{2}+4=0 \Rightarrow r= \pm 2 i=\alpha \pm i \beta, \operatorname{so} \alpha=0, \beta=2
$$

Eigenvectors:
$r=2 i$:
$\left[\begin{array}{ll}2-2 i & -4 \\ 2 & -2-2 i\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{lll}2-2 i & -4 & 0 \\ 2 & -2-2 i & 0\end{array}\right]$
R_{1} says $(2-2 i) u_{1}=4 u_{2} \Rightarrow u_{2}=\left(\frac{2-2 i}{4}\right) u_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) u_{1}$. Let $u_{1}=s$;
then $\vec{u}=\left[\begin{array}{l}s \\ \left(\frac{1}{2}-\frac{i}{2}\right) s\end{array}\right]=s\left[\begin{array}{l}1 \\ \frac{1}{2}\end{array}\right]+i s\left[\begin{array}{l}0 \\ -\frac{1}{2}\end{array}\right]$. Let $s=2:$
\Rightarrow

$$
\vec{u}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]+i\left[\begin{array}{l}
0 \\
-1
\end{array}\right]=\vec{a}+\overrightarrow{i b}
$$

So the general solution is

$$
\begin{aligned}
\vec{x}(t) & =c_{1}\left\{e^{0 t} \cos 2 t\left[\begin{array}{l}
2 \\
1
\end{array}\right]-e^{0 t} \sin 2 t\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right\}+c_{2}\left\{e^{0 t} \sin 2 t\left[\begin{array}{l}
2 \\
1
\end{array}\right]+e^{0 t} \cos 2 t\left[\begin{array}{l}
0 \\
-1
\end{array}\right]\right\} \\
& =c_{1}\left[\begin{array}{l}
2 \cos 2 t \\
\cos 2 t+\sin t 2 t
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \sin 2 t \\
\sin 2 t-\cos 2 t
\end{array}\right]
\end{aligned}
$$

Nonhomogeneous Systems

Undetermined Coefficients

Consider the nonhomogeneous constant coefficient system

$$
x^{\prime}(t)=A x(t)+f(t)
$$

Example Find the general solution of

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right] x(t)+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t} \\
-2 e^{t}
\end{array}\right]
$$

Solution:
We first find the homogeneous solution.
$\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, eigenvectors: $\left\{\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right\} \leftrightarrow-3,\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\} \leftrightarrow 3$
Since these eigenvectors are linearly independent, then

$$
x_{h}(t)=c_{1} e^{-3 t}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We seek a particular solution of the form

$$
x_{p}(t)=e^{t}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Then

$$
\begin{aligned}
x_{p}^{\prime}(t) & =e^{t}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=A x_{p}(t)+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t} \\
-2 e^{t}
\end{array}\right]=e^{t}\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t} \\
-2 e^{t}
\end{array}\right] \\
& =e^{t}\left(\left[\begin{array}{c}
a_{1}-2 a_{2}+2 a_{3} \\
-2 a_{1}+a_{2}+2 a_{3} \\
2 a_{1}+2 a_{2}+a_{3}
\end{array}\right]+\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& a_{1}=a_{1}-2 a_{2}+2 a_{3}+2 \\
& a_{2}=-2 a_{1}+a_{2}+2 a_{3}+4 \\
& a_{3}=2 a_{1}+2 a_{2}+a_{3}-2
\end{aligned}
$$

Or

$$
\begin{aligned}
2 a_{2}-2 a_{3} & =2 \\
2 a_{1}-2 a_{3} & =4 \\
2 a_{1}+2 a_{2} & =2
\end{aligned}
$$

Solution is: $\left\{a_{2}=0, a_{1}=1, a_{3}=-1\right\}$

Therefore

$$
x_{p}(t)=e^{t}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

and

$$
x(t)=x_{h}(t)+x_{p}(t)=c_{1} e^{-3 t}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right]+e^{t}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

Example a) Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]
$$

Solution: We solve $\operatorname{det}(A-r I)=0$.

$$
\begin{aligned}
\operatorname{det}(A-r I) & =\left|\begin{array}{cc}
2-r & -1 \\
1 & 2-r
\end{array}\right| \\
& =(2-r)^{2}+1 \\
(2-r)^{2} & =-1 \\
2-r & = \pm i \\
r & =2 \pm i
\end{aligned}
$$

So, the eigenvalues are a complex conjugate pair. We find the eigenvector for one and take the complex conjugate to get the other. For $r=2+i$, we solve

$$
(A-r I) u=0
$$

$$
\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Thus we have the equations

$$
\begin{array}{r}
-i u_{1}-u_{2}=0 \\
u_{1}-i u_{2}=0
\end{array}
$$

The second row is redundant, so $-i u_{1}-u_{2}=0$ or $u_{2}=-i \cdot u_{1}$. Hence any multiple of $\left[\begin{array}{c}1 \\ -i\end{array}\right]$ is an eigenvector for $r=2+i$. Then an eigenvector corresponding to $r=2-i$ is $\left[\begin{array}{l}1 \\ i\end{array}\right]$.
b) Find the [real] general solution to

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
12 e^{2 t}
\end{array}\right]
$$

Solution: The solution is the general solution $\left(x_{h}\right)$ to the homogeneous equation plus one [particular] solution $\left(x_{p}\right)$ to the full non-homogeneous equation. First we'll find x_{p}. It is in the form

$$
x_{p}=\left[\begin{array}{l}
c_{1} e^{2 t} \\
c_{2} e^{2 t}
\end{array}\right]
$$

Substituting into the D.E., we obtain

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
2 c_{1} e^{2 t} \\
2 c_{2} e^{2 t}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} e^{2 t} \\
c_{2} e^{2 t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
12 e^{2 t}
\end{array}\right]
$$

Hence

$$
\left[\begin{array}{c}
2 c_{1} e^{2 t} \\
2 c_{2} e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{2 t}-c_{2} e^{2 t} \\
c_{1} e^{2 t}+2 c_{2} e^{2 t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
12 e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{2 t}-c_{2} e^{2 t} \\
c_{1} e^{2 t}+2 c_{2} e^{2 t}+12 e^{2 t}
\end{array}\right]
$$

We can divide by $e^{2 t}$ (which is never zero) and move the unknowns to the left side to obtain

$$
\begin{aligned}
{\left[\begin{array}{l}
-c_{2} \\
-c_{1}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
12
\end{array}\right] \\
x_{p} & =\left[\begin{array}{c}
-12 e^{2 t} \\
0
\end{array}\right]
\end{aligned}
$$

b) Find the [real] general solution to

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
12 e^{2 t}
\end{array}\right] .
$$

To find a solution to the homogeneous solution we use the eigenvalue $2+i=\alpha+i \beta$ and the corresponding eigenvector $\left[\begin{array}{c}1 \\ -i\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]+i\left[\begin{array}{c}0 \\ -1\end{array}\right]=\mathbf{a}+i \mathbf{b}$.
Since

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{\alpha t}(\cos \beta t \mathbf{t a}-\sin \beta t \mathbf{b}) \\
& \mathbf{x}_{2}(t)=e^{\alpha t}(\sin \beta t \mathbf{t a}+\cos \beta t \mathbf{b})
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{2 t}\left(\cos t\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\sin t\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right) \\
& \mathbf{x}_{2}(t)=e^{2 t}\left(\sin t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\cos t\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbf{x}_{h}(t) & =c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t) \\
& =c_{1}\left[\begin{array}{c}
e^{2 t} \cos t \\
e^{2 t} \sin t
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{2 t} \sin t \\
-e^{2 t} \cos t
\end{array}\right]
\end{aligned}
$$

Or, for the solution to the homogeneous equation, we may use one of the eigenvalues and eigenvectors found in 2 a to write a complex solution and break it into real and imaginary parts. We'll use $2+i$.

$$
\begin{aligned}
x & =e^{(2+i) t}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=e^{2 t}(\cos t+i \sin t)\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{2 t} \cos t+i e^{2 t} \sin t \\
e^{2 t} \sin t-i e^{2 t} \cos t
\end{array}\right] \\
x_{h} & =c_{1}\left[\begin{array}{c}
e^{2 t} \cos t \\
e^{2 t} \sin t
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{2 t} \sin t \\
-e^{2 t} \cos t
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{2 t} \cos t & e^{2 t} \sin t \\
e^{2 t} \sin t & -e^{2 t} \cos t
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Finally, we add to obtain the desired solution.

$$
x=\left[\begin{array}{cc}
e^{2 t} \cos t & e^{2 t} \sin t \\
e^{2 t} \sin t & -e^{2 t} \cos t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]+\left[\begin{array}{c}
-12 e^{2 t} \\
0
\end{array}\right]
$$

