Ma 529 Lecture I

1. Foundations of Math Analysis

Limits and Continuity

Consider the the function f defined by

$$f(x)=rac{x^2-3x+2}{x-2} \qquad \quad x
eq 2.$$

The domain of

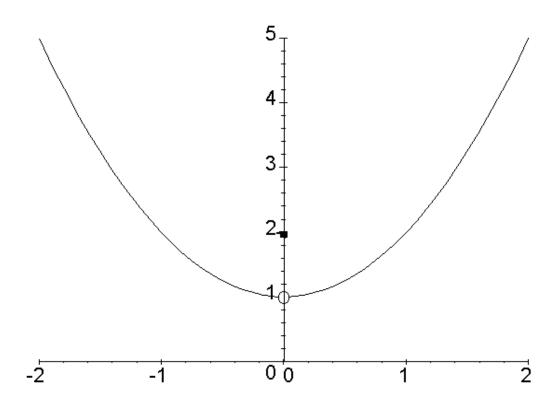
$$f(x)=\{x\mid x
eq 2, x\ real\}.$$
 Note that $f(x)=rac{(x-2)(x-1)}{x-2}=x-1$ if $x
eq 2$. Thus

 $\lim_{x\to 2} \frac{x^2-3x+2}{x-2} = 1$. Note that $\lim_{x\to 2} f(x) = 1$ although f(2) is not defined.

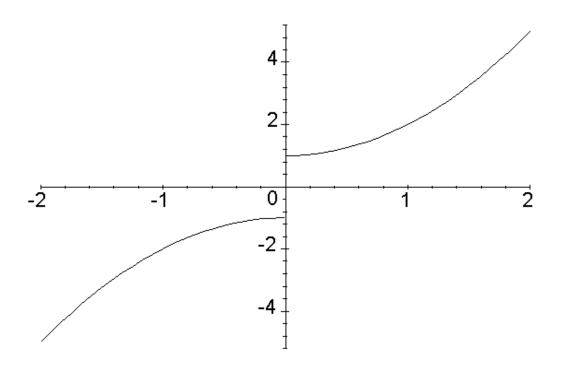
Example. Even if f(a) exists it is not necessarily true that $\lim_{x\to a} f(x) = f(a)$.

Consider the two functions:

$$f(x) = \begin{cases} x^2 + 1 & \text{if } |x| > 0\\ 2 & \text{if } x = 0 \end{cases}$$



$$g(x) = \begin{cases} x^2 + 1 & \text{if } x \ge 0 \\ -x^2 - 1 & \text{if } x < 0 \end{cases}$$



Note that domain of f(x)= domain of g(x)=R. However $\lim_{x\to 0} f(x)=1\neq f(0)$ whereas $\lim_{x\to 0} g(x)$ does not exist.

Definition: Let f be a real-valued function of a real variable. Then the <u>limit as x approaches a of f(x) is b, is written $\lim_{x\to a} f(x) = b$ if for any $\epsilon > 0$, \exists a $\delta > 0$ such that wherever x is in the domain of f and $0 < |x-a| < \delta$, then $|f(x)-b| < \epsilon$.</u>

The special case in which $\lim_{x\to a}f(x)=f(a)$ is important. This is the case for a function f defined $\forall \times \in R$ whose graph has no breaks. Such a function is called continuous. To be precise:

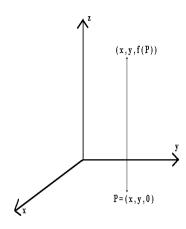
Definition: A real-valued function of a real variable is continuous at a if a is in domain of f and $\lim_{x\to a} f(x) = f(a)$. The function f is simply said to be <u>continuous</u> if it is continuous at every number in its domain.

Partial Differentiation

Functions of Two Variables:

The volume of a right circular cylinder of radius r and altitude h is $V = \pi r^2 h$. Clearly V changes as r and h change, i.e., V is a function of the 2 variables r and h.

More generally, if z is uniquely determined by values of x and y, then we say z is a function of x and y and write z = f(x, y). Another way of saying this is as follows: Consider a 3-dimensional coordinate system x, y, z. Then if we consider some point $P = (x, y) \Rightarrow z = f(P)$ and (x, y, z) is a point in 3 space.



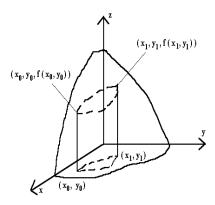
Example. $z=\sqrt{r^2-x^2-y^2}$ is the upper half of a sphere of radius r centered at the origin.

Partial Derivatives

In general the graph of z = f(x, y) is a <u>surface</u> in x, y, z-space.

We desire to talk about the derivative of z = f(x, y). Now if we have a function g(x) of one variable, then we know that $g'(x_0)$ is the rate of change of the graph of y = g(x) at $(x_0, g(x_0))$.

Question: Given a point $P_0=(x_0\,,y_0\,)$, what is the rate of change of z=f(x,y) at $(x_0\,,y_0\,,f(x_0\,,y_0\,))$?



It is clear from the picture that the rate of change depends upon the direction that P_0 is approached from. That is, if $P_1=(x_1\,,y_1\,)$ is another point in the x,y-plane, the rate of change depends upon which curve in the x,y-plane we move along to get to P_0 .

We shall restrict our attention to approaching P_0 from 2 directions, namely along a line parallel to the x-axis or along a line parallel to the y-axis.

Consider approach to the point P_0 along a line $y=y_0$, i.e. parallel to the x-axis. Now $\triangle\,z=f(x_1\,,\!y_0\,)-f(x_0\,,\!y_0\,)$

$$\triangle x = x_1 - x_0$$

$$\Rightarrow rac{ riangle z}{ riangle x} = rac{f(x_1\,,y_0\,) - f(x_0\,,y_0\,)}{ riangle x}$$

or
$$\frac{\triangle z}{\triangle x} = \frac{f(x_0 + \triangle x, y_0) - f(x_0, y_0)}{\triangle x}$$

 \Rightarrow rate of change of f along the line $y=y_0$ at (x_0,y_0) is

$$\mathop {\lim }\limits_{igtriangle x o 0} rac{{f(x_0 + igtriangle x,y_0 \,) - f(x_0 \, ,y_0 \,)}}{{ riangle x}}$$
 .

Definition. The first partial derivative of f(x,y) with respect to x at a point (x,y), denoted by $\frac{\partial f}{\partial x}$ or f_x , is

$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

Similarly, the rate of change of f along $x = x_0$ at (x_0, y_0) is called the first partial derivative of f(x, y) with respect to y at (x_0, y_0) . At any point (x, y) we have

$$\frac{\partial f}{\partial y} = f_y = \lim_{\triangle y \to 0} \frac{f(x, y + \triangle y) - f(x, y)}{\triangle y}.$$

The actual computing of a partial derivative is straight-forward. For example, to get $\frac{\partial f}{\partial x}$ the above definition says hold y fixed and differentiate with respect to x.

Example.
$$z = f(x, y) = 100 - x^2 + y^2$$

$$rac{\partial f}{\partial x} = -2x$$
 $rac{\partial f}{\partial y} = 2y$

Example.
$$f(x,y) = cosh\left(\frac{y}{x}\right)$$
 (Note: $cosh\ t = \frac{e^t + e^{-t}}{2}$ and $sinh\ t = \frac{e^t - e^{-t}}{2}$.)

$$rac{\partial f}{\partial y} \,=\, rac{1}{x}\, sinh\left(rac{y}{x}
ight) \qquad rac{\partial f}{\partial x} \,=\, \left(\,-\,rac{y}{x^2}
ight) sinh\left(rac{y}{x}
ight).$$

Higher Partial Derivatives

If we have $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, then we may take their partials with respect to x or y. Thus

$$rac{\partial}{\partial x}\left(rac{\partial f}{\partial x}
ight) \,=\, rac{\partial^2 f}{\partial x^2} \,=\, f_{xx} \qquad rac{\partial}{\partial y}\left(rac{\partial f}{\partial x}
ight) \,=\, rac{\partial^2 f}{\partial y \partial x} \,=\, f_{yx}$$

$$\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \ = \ \frac{\partial^2 f}{\partial x \partial y} \ = \ f_{xy} \qquad \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) \ = \ \frac{\partial^2 f}{\partial y^2}$$

Example.
$$f(x,y)=x^3y^4-2x^2e^y$$
 $f_x=3x^2y^4-4xe^y$ $f_y=4x^3y^3-2x^2e^y$ $f_{xx}=6xy^4-4e^y$ $f_{yy}=12x^3y^2-2x^2e^y$

Example:
$$f = x^y$$

$$\frac{\partial f}{\partial y} = x^y \ln x$$
 (1) Recall $\frac{d}{dx} a^u = a^u \ln a \frac{du}{dx}$, a constant

$$rac{\partial f}{\partial x} = y \ x^{y-1} f_{xy} = rac{\partial^2 f}{\partial x \partial y} = rac{\partial}{\partial x} \left(x^y \ ln \ x
ight)$$

$$= y x^{y-1} \ln x + x^y \frac{1}{x}$$

$$f_{yx}=rac{\partial}{\partial y}\left(yx^{y-1}
ight)=x^{y-1}+y~x^{y-1}~ln~x$$

Example:

$$egin{aligned} f(x,y) &= sin(x-y)f_y = -cos(x-y) \ f_x &= cos(x-y)f_{yy} = -sin(x-y) \ f_{xx} &= -sin(x-y) \end{aligned}$$
 Note that $f_{xx} - f_{yy} = 0$. $rac{\partial}{\partial x}f_y = rac{\partial}{\partial x}\left(-cos(x-y)
ight) = sin(x-y), \ rac{\partial}{\partial y}f_x = +sin(x-y).$

Chain Rule for Partial Derivatives: Recall that if y = f(u) and u = y(x). Then

$$rac{dy}{dx} = rac{dy}{du} \quad rac{du}{dx} = f'(u)g'(x) = f'(g(x))y'(x).$$

Consider: z = f(x, y) and suppose x = g(r, s) y = h(r, s). i.e., x and y are functions of the variables r, s. Then we have z = F(r, s) = f(g(r, s)), h(r, s). Chain rule says

$$\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial F}{\partial r}$$

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial F}{\partial s}.$$

Example. $f(x,y) = e^{xy}$ $x = r \cos \theta$ $y = r \sin \theta$. Find f_r, f_θ in terms of r and θ .

$$rac{\partial f}{\partial r} = y \, e^{xy} \, cos heta + (x \, e^{xy}) sin heta = (re^{r^2 sin heta cos heta} sin heta) cos heta + rcos heta \, e^{r^2 sin heta cos heta} sin heta$$

$$rac{\partial f}{\partial heta} = r^2 \ cos 2 heta (e^{r^2} sin heta cos heta).$$

<u>Leibnitz's Rule</u>: Often it is necessary to deal with a function $\phi(x)$ defined by an integral of the form

$$\phi(x) = \int_{A(x)}^{B(x)} f(x,t) dt$$

where f is such that we cannot evaluate the integral. In particular, an expression for $\phi'(x)$ is often required. If A and B are finite constants, differentiation with respect to x under integral sign can be justified $\forall \times \in (a,b)$ when f and $\frac{\partial f}{\partial x}$ are continuous for a $a \le x \le b$ and $A \le t \le B$. More generally, when the limits are not constant we can think of ϕ as a function of x directly and also indirectly, through the intermediate variables A(x) and B(x). Hence write $\phi = \phi(x,A,B)$ and

$$\frac{d\phi}{dx} = \frac{\partial\phi}{\partial x} + \frac{\partial\phi}{\partial B} \frac{dB}{dx} + \frac{\partial\phi}{\partial A} \frac{dA}{dx}$$

 $\frac{\partial \phi}{\partial x}$ is calculated by treating A and B as constants, i.e., merely by differentiating with respect to x under the integral sign. To evaluate the other partials of ϕ , let F(x,t) be a function such that $f(x,t) = \frac{\partial F(x,t)}{\partial t}$. Then

$$\phi(x,A,B) = \int_A^B rac{\partial F}{\partial t} \, dt = F(x,B) - F(x,A).$$

Therefore when x is held constant as A and B are imagined to vary \Rightarrow

$$egin{aligned} rac{\partial \phi}{\partial B} &= rac{\partial F(x,B)}{\partial B} = f(x,B) & rac{\partial \phi}{\partial A} &= rac{-\partial F(x,A)}{\partial A} = -f(x,A) \end{aligned} \ \Rightarrow rac{d}{dx} \, \int_A^B f(x,t) dt = \int_A^B rac{\partial f}{\partial x} \, (x,t) dt + f(x,B) \, rac{dB}{dx} - f(x,A) \, rac{dA}{dx} \, . \, \, (*) \end{aligned}$$

This is valid $\forall x \in (a,b)$ when f and also A'(x) and B'(x) are continuous. (*) is known as Leibnitz's rule.

Example: If
$$y(x)=\int_a^x h(t)\, sin(x-t)dt \ \Rightarrow \ y'(x)=\int_a^x h(t)\, cos(x-t)dt$$
 and $y''(x)=-\int_a^x h(t)\, sin(x-t)dt+h(x).$

Therefore it follows that y(x) satisfies the differential equation

$$y''(x) + y(x) = h(x).$$

By setting x = a in the expressions for y and y'(x) we get y(a) = 0 y'(a) = 0.

In the case of a function defined by an improper integral

$$\phi(x) = \int_{A(x)}^{\infty} f(x,t) dt.$$

It may shown that $\ rac{d}{dx}\int_{A(x)}^{\infty}f(x,t)dt=\ \int_{A}^{\infty}rac{\partial f(x,t)dt}{\partial x}-f(x,A)\ rac{dA}{dx}$.

Certain conditions must be met by f and $\frac{\partial f}{\partial x}$.

Example:
$$\phi(x)=\int_{0}^{\infty}e^{-t^{2}}\cos(2tx)dt$$

$$rac{d\phi}{dx}= \ -2{\int}_0^\infty te^{-t^2}sin(2tx)dt$$

Integrating by parts $\Rightarrow \frac{d\phi}{dx} = \left[e^{-t^2}sin(2tx)\right]_{t=0}^{t=\infty} -2x\int_0^\infty e^{-t^2}cos(2tx)dt$

$$= -2x \, \int_0^\infty e^{-t^2} cos(2tx) dt$$

 $\Rightarrow \phi$ satisfies the differential equation

$$\frac{d\phi}{dx} + 2x\phi = 0$$

 $\Rightarrow \phi = ce^{-x^2}$. When x = 0 the original expression for ϕ yields

$$\phi(0) = \ \int_{\ 0}^{\infty} e^{-t^2} dt = (rac{1}{2}) \sqrt{\pi} \ \Rightarrow \ \int_{0}^{\infty} e^{-t^2} \cos(2tx) dt = (rac{1}{2}) \sqrt{\pi} \ e^{-x^2}$$

Introducing the change of variable t=au where a>0 and writing $x=\frac{b}{2a}$ leads to

$$\int_{0}^{\infty} e^{-a^2u^2} \cos bu \, du = \frac{\sqrt{\pi}}{2a} e^{-b^2/4a^2}.$$