Ma 529
Lecture I

1. Foundations of Math Analysis

Limits and Continuity

Consider the the function f defined by
flz) = = 342 z # 2.
The domain of

f(z) ={z | x # 2,z real}. Note that f(x) = % =z —1 if £ # 2. Thus

lim 2"~3242 — 1. Note that lim f () = 1 although f(2) is not defined.
r— r—

Example. Even if f(a) exists it is not necessarily true that lim f(x) = f(a).

Consider the two functions:

[ x241 if |z|>0
f(-’”)—{ 2 if =0
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9\Z) = |\ —x2-1 if z<0
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Note that domain off(z) = domain of g(xz) = R. However lin}) f(z)=1+# f(0)
whereas lin}) g(zx) does not exist.

Definition: Let f be a real-valued function of a real variable. Then the limit as x
approaches a of f(x) is b, is written lim f(z) =bifforany € >0, 3aéd >0 such

that wherever z is in the domain of fandO0 < |z —a | <6, then | f(z) —b| < €.

The special case in which lim f(z) = f(a) is important. This is the case for a function f

defined V x € R whose graph has no breaks. Such a function is called continuous. To be
precise:

Definition: A real-valued function of a real variable is continuous at a if a is in domain of
fand lim f(z) = f(a). The function f is simply said to be continuous if it is continuous
r—a

at every number in its domain.

Partial Differentiation

Functions of Two Variables:

The volume of a right circular cylinder of radius 7 and altitude & is V' = 7wr2h. Clearly V'
changes as  and h change, i.e., V' is a function of the 2 variables 7 and h.
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More generally, if z is uniquely determined by values of x and y, then we say z is a
function of = and y and write 2 = f(xz,y). Another way of saying this is as follows:
Consider a 3-dimensional coordinate system x,y,z. Then if we consider some point
P = (z,y) = z= f(P) and (z,y,2) is a point in 3 space.

H

AN

(x,y,£(F})

N

P={x,y,0)

Example. z = /72 — 22 — g2 is the upper half of a sphere of radius r centered at the
origin.

Partial Derivatives
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In general the graph of z = f(x,y) is a surface in z, y, z-space.

We desire to talk about the derivative of z = f(x,y). Now if we have a function g(x) of
one variable, then we know that g’ (x¢ ) is the rate of change of the graph of y = g(x) at
(%o ,9(%0)) -

Question: Given a point Py = (o ,yo ), What is the rate of change of z = f(z,y) at
(%o , 50 f(Z0,%0))?

(xlnl’llf(xlnl’l))

(x“, y[]lf(xﬂl w))

N

N

. f) (x1sY1)

e (Xn, Yu)

It is clear from the picture that the rate of change depends upon the direction that Py is
approached from. That is, if P, = (z; ,y; ) is another point in the =, y-plane, the rate of
change depends upon which curve in the x, y-plane we move along to get to F, .

We shall restrict our attention to approaching Py from 2 directions, namely along a line
parallel to the x-axis or along a line parallel to the y-axis.

Consider approach to the point P, along a line y = yq , i.e. parallel to the x-axis.

Now A z = f(x1,y0) — f(xo,¥0)
Nx=xz1 — x

= % _ f(= ’yO)A_a.:f(wo,yo)

or 2z — f(zo +Azyy0 ) —f(zo0 ,y0)
A T YAN:

=> rate of change of f along the line y = yo at (zo ,yo ) is

lim fxo+Az, yo )—f(xo,¥0) .
A £—0 Az
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Definition. The first partial derivative of f(z,y) with respect to =z at a point (z,y),
denoted by g—i or f,,is

T Axz—0 z

Similarly, the rate of change of f along x = x( at (zo , yo ) is called the first partial
derivative of f(x,y) with respect to y at (o ,yo ). At any point (z,y) we have

of _ £ _ 15 f(z, y+Ly)—f(z,y)
a = Ty =Am, Ay '

The actual computing of a partial derivative is straight-forward. For example, to get g—j: the
above definition says hold y fixed and differentiate with respect to x.

Example. z = f(z,y) = 100 — x? + 3>

8f __ of _

t

Example. f(m, y) = cosh (%) (NOte: cosh t = et+et and sinh t — et—e— .)

2 2
% = 1sinh (%) % = (— %) sinh (%) .

Higher Partial Derivatives

If we have g—i and g—i , then we may take their partials with respect to « or y. Thus
i(ﬂ — 2 _ ¢ i(ﬂ — 2f _ ¢

oz \ Ox - 9x2 ~— JxT Oy \ Oz - 9yox ~ Jyx

@(ﬂ — 21 _ f @(ﬂ _ &f

oz \dy ) ~— Ozoy ~— JTY oy \(dy ) ~— 90y?

Example. f(z,y) = 23y* — 22%e¥  f, = 3z%y* —4ze¥ f, = 423y3 — 2z%e¥
fre = 6zy* — 4eY Jow = 1223y? — 2x2%e¥

Example: f = x¥

g—g = z¥ In = (1)Recall % a* =a"lna % , a constant
af 0f

-1 o)
6w=yxy f“’y:axay:%(xylnw)
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— y—1 y 1
=yz¥ T lnx+x¥

Sye = a% (y:cy_l) =zvV 4yt ling

Example:

f(z,y) = sin(z —y)fy = —cos(z —y)
[z =cos(x —y) fyy = — sin(zx —y)
fox = — sin(z — y)

Note that f,, — f,, = 0. %fy = (% (— cos(z — y)) = sin(z — vy),
a%fz = + sin(z — y).

Chain Rule for Partial Derivatives: Recall that if y = f(u) and u = y(x). Then

d_dy du _ 1) g/ () = f'(9(x))y (@)

Consider: z = f(z,y) and suppose z = g(r,s) y = h(r,s). i.e., z and y are functions
of the variables r,s. Then we have z = F'(r,s) = f(g(r, s)), h(r,s)). Chain rule says

o0z __ Of Oz of 8y _ 8F
6r+

o gy

or = Or

@_afaz+afay OF
8s = Oz Os dy ds — 9s°

Example. f(z,y) =e™ x=rcosd y=rsinb. Find f., fo in terms of r and
6.

g{ — y e™ cosl + (x e™V)sind = (re” *"9°°%0 5inh)cosh + rcosl e 579050 5inQ

gg = 72 cos20(e” sinfcosh).

Leibnitz's Rule: Often it is necessary to deal with a function ¢(z) defined by an integral of
the form

s@) = [0 f@ Dt

where f is such that we cannot evaluate the integral. In particular, an expression for
¢’ (x) is often required. If A and B are finite constants, differentiation with respect to z
under integral sign can be justified V x € (a,b) when f and g—£ are continuous for a
a<xz<b and A<t < B. More generally, when the limits are not constant we can
think of ¢ as a function of = directly and also indirectly, through the intermediate
variables A(z) and B(z). Hence write ¢ = ¢(xz, A, B) and
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d¢ __ 8¢ dB |, 8¢ dA
dz ~— + 8B dz + A dx

g—i is calculated by treating A and B as constants, i.e., merely by differentiating with
respect to z under the integral sign. To evaluate the other partials of ¢, let F'(x,t) be a
function such that f(z,t) = %. Then

#(z, A, B) = f . & dt = F(z, B) — F(z, A).

Therefore when z is held constant as A and B are imagined to vary =

OF (z —OF(x,A
% =EED _ f(z,B) 4= 5N — _ f(z,a)

=2 [7 fa,t)dt = [ 2 (z,t)dt + f(w, B) L& — f(z,4) 4. (%)

This is valid V = € (a,b) when f and also A’(z) and B’(x) are continuous.
(*) is known as Leibnitz's rule.

Example: If y(z) = th(t) sin(z —t)dt = y'(z) = faxh(t) cos(z — t)dt
andy”(z) = — [ h(t) sin(z — t)dt + h(z).
Therefore it follows that y(x) satisfies the differential equation

Y'(z) +y(z) = h(z).
By setting z = a in the expressions for y and 3’ (z) we get y(a) =0 3'(a) = 0.
In the case of a function defined by an improper integral

¢(@) = [ 4oy F@,t)dt.
d [ _ ) f(z t)dt
It may shown that %L(z) f(z,t)dt = f = — f(x, A
Certain conditions must be met by f and g—ﬁ.
Example: ¢(x) = f(:)o et cos(2tx)dt
- — 2f%° te ¥ sin(2tz)dt

Integrating by parts = % = [e ¥ sin(2tz)]" Y —2z f(;oo e t'cos(2tx)dt
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= — 2z f(:)o e ' cos(2tz)dt
= ¢ satisfies the differential equation
d
ﬁ +2x¢$=0
= ¢ =ce . Whenz = O the original expression for ¢ yields

#(0)= [V etdt=G)/m = [~ e cos(2tx)dt=(1)y/m e

Introducing the change of variable ¢ = au where a > 0 and writing z = % leads to

co 2.2 2 2
foe““cosb'u,du= geb/‘la.
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