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Lecture X

More consequences of the Cauchy Integral Theorem.
Theorem 2: If f(2) is analytical throughout a simply connected domain D, then

F(z) = [ f(2)dz
is an analytic function whose derivative at each point of D is f(2).
Theorem 3: If f(2) is analytic in a simply connected domain D, then, provided the path of
integration lies entirely in D, [’ jl f(z)dz=G(z1) —G(2,) where G(z) is any
antiderivative of f(2).

Proof: By Theorem 2, since f(2) is analyticin D, F'(z) = [ : f(2)dz is an antiderivative
of f(2). If G(z) is also an antiderivative then

F'(2)=G'"(2)=f(2) = F(2)=G(R)+C = Lff(z)dz=G(z)+C.
Let z = z9p = G(29) = — C = result.

Example. Whatis [ L+

o (2% +cosh2z)dz =?

f(2) = 2?2 4+ cosh2z is analytic everywhere.

Also, G(z) = 32° + sinh2z is an antiderivative. By Theorem 3:

1+im .

.[;) " (22 + cosh2z)dz = % 23+ % Sinh2z| 1—|(-)z7r
= 3(1+im)3 + 1 sinh2(1 + iw)
=%—7r2+%+’%r(3_ﬂ_2)

Theorem 4: If u(x,y) is a solution of Laplace's equation in a domain D, then in D 3 an
analytic function having w as its real part, namely, f(z) = u + v where

(z,y)
v(z,y) = ng:jo){ — Z—Z dz + % dy } and the path of integration is from zy = xy + iy,

to z = x + <y lying entirely in D.
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Theorem 5: (The Cauchy Integral Formula). Let f(z) be analytic in a simply connected
domain D. Let 2z, be any point in D and let C' be any simply closed path in D enclosing
2z9. Then

F(z0) = 5= f ;fi—zz)odz.
c

Example: Evaluate f 2ridz if Cis

1) a unit circle with center at z = %.

2) a unit circle with center at z = — 4.
. _ e’ dz
We write ‘f 7dz = ‘f porw ol

1) Call 2y =i and f(2) =

o _H By the Cauchy Integral formula we have:

f z2+1 dz = 2mi f(i) = 2mi ;—; = mw(cosl + isinl).

c
2) Callzy= — ¢ and f(2) = . Again
f 218z =2mi f(— i) = 2mi £5; = — w(cosl — isinl)
c

Theorem 6: (Cauchy Integral Formula for Higher Derivatives) Let f(z) be analytic at 2.
Then f(z) has derivatives of all orders at 2y, and the nth derivative at 2 is:

PO =2 § L

where C is any closed path about 2, such that f(=2) is analytic on and inside C.

Remark: Functions of a real variable do not, in general, possess the derivative properties
described by Theorem 6. For example xs possesses a first and second derivative at z = 0,
but no derivative of higher order.

Theorem 7: (Morera's Theorem) If f(2) is continuous in a domain D, and
f f(2)dz = 0 for every simple closed path C in D, then f(z) is analytic in D.

c
Remark: Morera's Theorem is the converse of the Cauchy Integral Theorem.

Complex sequences and series, Tavlor and Laurent Expansions -




Complex Sequences

Definition: A complex sequence is a function from the positive integers to the complex
numbers.

Notation: should be written z(n) instead of z,, n > 1.

Example: z, = (;;)n + (3"7:2) i, z1=3+i;20=1+4+2i;...etc.
Definition: A sequence 23, 25... is said to converge to the number L if, given € > 03 an
integer NV such that |z, — L | < € if n > N.

Remark: The definition means that given any € -neighborhood of L 3 an N such that
Zpn, Zn+1, --- are in this neighborhood. If {z,} converges to L we write lim 2z, = L or

n—oo

z, — L. If a sequence does not converge, we say it diverges.

Theorem: Let 2, = x,, + iy, be a sequence (n > 1). Then 2,+A + iB < z,—A and
yn—B.

(=1~ (3n—2) .
2n + n 1

Example: 2z, =

=y-

Tp="5.— S0, — 0

Yn=8—2 soy, —» 3 — 2z, — 3i

Cauchy's Converge Criterion




Definition: a complex sequence 21, 22, ... is called a Cauchy Sequence if given € > 0,3 an
integer NV such that: |z, —2,,| < € if n>N, m> N.

Theorem: (Cauchy Convergence Criterion) A complex sequence 2z;, 22, ... converges <>
it is a Cauchy Sequence.

Complex Series. Consider a series of complex constants o; + a2 + a3 + ... . Let

m
Sm = Do, =a; +as+ ... + a,, (m the partial sum).

n=1

oo
Definition: The series > o, is said to converge to a number S if the sequence of partial

n=1
o0
sums S7,.So, ..., converges to S. In this case we write > a, = S. If the series does not

n=1
converge, we say it diverges.

oo
Theorem: Let, = b, + ic, (bn,c, real). > «, converges < each of the real series

n=1

oo oo
> b, and > c, converges.
1 1

o0
Definition: The series > v, is said to converge in the Cauchy sense if the sequence of
1

partial sums Sy, .Sy, ... is a Cauchy Sequence.

oo

Theorem: > v, is convergent (i.e. converges to a number) <> it is Cauchy convergent.
n=1

Theorem: If > «, converges,then lim «, = 0.

n=1 n—0oo
oo
Example: > # +4n? Since lim # +in? # 0 therefore the series diverges.
n=1 n—oo

Remark: Just because o, — O, this does not mean > o, converges.

Example: > 1 q,=1 a, — 0, but > 1 diverges.
1

o0 oo
Definition: > c, is said to be absolutely convergent if the series D> | v, | converges.
1 n=1

Remark: Absolute convergence implies ordinary convergence ;



Ordinary convergence does not imply absolute convergence.
oo

Example: > (*Tl)n converges, but > |%| = > L diverges.
1

Consider now functions f;(z) , f2(2),... all defined in a region R and the series

o0
>~ fa(2). For each z this is a series.
n=1

o0
Theorem: (Ratio Test) For the series > f,(2) let

n=1

lim 212 | R(2) | .

Then the given series converges absolutely for those values of =z for which
0 < | R(2) | < 1; and diverges for those values of z for which | R(z) | > 1.

Remark: The values of z for which | R(z) | =1 form the boundary of the region of
convergence (set of all values of z for which the series converges). At these points the ratio

test provides no information about the convergence of divergence of the series.

Example: Find the region of convergence of the series:
— 1 1 1 1 1
nz=:1m z+) _1+?(z+)+32(z+) + ..

Using the ratio test we have

fn@ | _ | @m(E5) () — n_ |z
fn(2) (z+1) 1 (z1\" Y (n+1) z—1
Now
. Fnt1(2) +1
Am | Re =1 | = [BEEI

Therefore the series certainly converges if

z+1

ol <lie, 241 < |2—1].




Therefore z must lie to the left of the _L bisector of the segment joining — 1 and + 1;i.e.,
z must lie in the left half of the complex plane.

I
|
|
|
n .
|
|

Test gives no information on the boundary, i.e., for values of z on the imaginary axis. For
z = at (a any constant), we have for absolute value of the series that

n—1 o) 1
= > -5 which converges.
1 n
n=

o 1
2
n=1

z+1
-1

z

Since absolute convergence — convergence — series converges also on the imaginary
axis. Therefore series convergesVz = x + y¢ such that z < 0.

Uniform convergence: Let fi1(2) , fz2(2)... all be defined in a region R and

&@=§Mﬁ

o0
Definition: The series ) _ f;(2) is said to converge uniformly to the function f(=2) if,

i=1
given € > 0 3 a positive integer N = N( € ) such that | f(2) —S,(2)| < € for
anyn > N and any z € R.

Note: If convergence is not uniform, then N = N( € , 2).

Theorem: If fi(2), f2(2)... are all continuous in R and if Y f;(z) converges uniformly
in R to f(z), then the sum f(z) is also a continuous function in R.



