Ma 529 Lecture X

More consequences of the Cauchy Integral Theorem.

Theorem 2: If f(z) is analytical throughout a simply connected domain D, then

$$F(z) = \int_{z_0}^z f(z) dz$$

is an analytic function whose derivative at each point of D is f(z).

Theorem 3: If f(z) is analytic in a simply connected domain D, then, provided the path of integration lies entirely in D, $\int_{z_0}^{z_1} f(z) dz = G(z_1) - G(z_0)$ where G(z) is any antiderivative of f(z).

Proof: By Theorem 2, since f(z) is analytic in D, $F(z) = \int_{z_0}^{z} f(z) dz$ is an antiderivative of f(z). If G(z) is also an antiderivative then

$$F'(z) = G'(z) = f(z) \Rightarrow F(z) = G(z) + C \Rightarrow \int_{z_0}^z f(z) dz = G(z) + C.$$

Let $z = z_0 \Rightarrow G(z_0) = -C \Rightarrow$ result.

Example. What is $\int_0^{1+i\pi} (z^2 + cosh2z) dz = ?$

 $f(z) = z^2 + cosh2z$ is analytic everywhere.

Also, $G(z) = \frac{1}{3}z^3 + \frac{1}{2}sinh2z$ is an antiderivative. By Theorem 3: $\int_0^{1+i\pi} (z^2 + cosh2z)dz = \frac{1}{3}z^3 + \frac{1}{2}sinh2z\Big|_0^{1+i\pi}$ $= \frac{1}{3}(1+i\pi)^3 + \frac{1}{2}sinh2(1+i\pi)$ $= \frac{1}{3} - \pi^2 + \frac{sinh2}{2} + \frac{i\pi}{3}(3-\pi^2)$

Theorem 4: If u(x, y) is a solution of Laplace's equation in a domain D, then in D \exists an analytic function having u as its real part, namely, f(z) = u + iv where

 $v(x,y) = \int_{(x_0,y_0)}^{(x,y)} \{-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \}$ and the path of integration is from $z_0 = x_0 + iy_0$ to z = x + iy lying entirely in D.

MA529\Lec10.wxp

Theorem 5: (The Cauchy Integral Formula). Let f(z) be analytic in a simply connected domain D. Let z_0 be any point in D and let C be any simply closed path in D enclosing z_0 . Then

$$f(z_0)=rac{1}{2\pi i} \oint\limits_C rac{f(z)}{z-z_0} dz.$$

Example: Evaluate $\oint_C \frac{e^z}{z^2+1} dz$ if C is

- 1) a unit circle with center at z = i.
- 2) a unit circle with center at z = -i.

We write
$$\oint_C \frac{e^z}{z^2+1} dz = \oint_C \frac{e^z}{z+i} \frac{dz}{z-i}$$
.

1) Call $z_0 = i$ and $f(z) = \frac{e^z}{z+i}$. By the Cauchy Integral formula we have:

$$\oint_C rac{e^z}{z^2+1} dz = 2\pi i \ f(i) = 2\pi i \ rac{e^i}{2i} = \pi (cos1+isin1) dz$$

2) Call $z_0 = -i$ and $f(z) = \frac{e^z}{z-i}$. Again

$$\oint\limits_C rac{e^z}{z^2+1} dz = 2\pi i \; f(-i) = 2\pi i \; rac{e^{-i}}{-2i} = - \pi (cos1-isin1)$$

Theorem 6: (Cauchy Integral Formula for Higher Derivatives) Let f(z) be analytic at z_0 . Then f(z) has derivatives of all orders at z_0 , and the nth derivative at z_0 is:

$$f^{(n)}(z_0) = rac{n!}{2\pi i} \oint\limits_C rac{f(z)}{(z-z_0)^{n+1}} \, dz$$

where C is any closed path about z_0 such that f(z) is analytic on and inside C.

Remark: Functions of a real variable do not, in general, possess the derivative properties described by Theorem 6. For example $x^{\frac{7}{3}}$ possesses a first and second derivative at x = 0, but no derivative of higher order.

Theorem 7: (Morera's Theorem) If f(z) is continuous in a domain D, and $\int_C f(z)dz = 0$ for every simple closed path C in D, then f(z) is analytic in D.

Remark: Morera's Theorem is the converse of the Cauchy Integral Theorem.

Complex sequences and series, Taylor and Laurent Expansions -

Complex Sequences

Definition: A complex sequence is a function from the positive integers to the complex numbers.

Notation: should be written z(n) instead of z_n $n \ge 1$.

Example: $z_n = \frac{(-1)^n}{2n} + \frac{(3n-2)}{n}i$, $z_1 = \frac{-1}{2} + i$; $z_2 = \frac{1}{4} + 2i$; ... etc.

Definition: A sequence $z_1, z_2...$ is said to *converge* to the number L if, given $\in > 0 \exists$ an integer N such that $|z_n - L| < \in$ if $n \ge N$.

Remark: The definition means that given $any \in -\text{neighborhood of } L \exists an N$ such that $z_n, z_{n+1}, ...$ are in this neighborhood. If $\{z_n\}$ converges to L we write $\lim_{n \to \infty} z_n = L$ or $z_n \to L$. If a sequence does not converge, we say it *diverges*.

Theorem: Let $z_n = x_n + iy_n$ be a sequence $(n \ge 1)$. Then $z_n \rightarrow A + iB \Leftrightarrow x_n \rightarrow A$ and $y_n \rightarrow B$.

Example: $z_n = \frac{(-1)^n}{2n} + \frac{(3n-2)}{n}i$ $x_n = \frac{(-1)^n}{2n}$ so $x_n \rightarrow 0$ $y_n = 3 - \frac{2}{n}$ so $y_n \rightarrow 3 \rightarrow z_n \rightarrow 3i$

Cauchy's Converge Criterion

Definition: a complex sequence $z_1, z_2, ...$ is called a *Cauchy Sequence* if given $\in > 0, \exists$ an integer N such that: $|z_n - z_m| < \in$ if $n \ge N, m \ge N$.

Theorem: (Cauchy Convergence Criterion) A complex sequence $z_1, z_2, ...$ converges \Leftrightarrow it is a Cauchy Sequence.

<u>Complex Series</u>. Consider a series of complex constants $\alpha_1 + \alpha_2 + \alpha_3 + \dots$. Let

$$S_m = \sum_{n=1}^m \alpha_n = \alpha_1 + \alpha_2 + ... + \alpha_m$$
 (*m* the partial sum).

Definition: The series $\sum_{n=1}^{\infty} \alpha_n$ is said to converge to a number S if the sequence of partial sums $S_1, S_2, ...$, converges to S. In this case we write $\sum_{n=1}^{\infty} \alpha_n = S$. If the series does not converge, we say it diverges.

Theorem: Let $\alpha_n = b_n + ic_n$ (b_n, c_n real). $\sum_{n=1}^{\infty} \alpha_n$ converges \Leftrightarrow each of the real series $\sum_{1}^{\infty} b_n$ and $\sum_{1}^{\infty} c_n$ converges.

Definition: The series $\sum_{1}^{\infty} \alpha_n$ is said to converge in the Cauchy sense if the sequence of partial sums $S_1, S_2, ...$ is a Cauchy Sequence.

Theorem: $\sum_{n=1}^{\infty} \alpha_n$ is convergent (i.e. converges to a number) \Leftrightarrow it is Cauchy convergent.

Theorem: If
$$\sum_{n=1}^{\infty} \alpha_n$$
 converges, then $\lim_{n \to \infty} \alpha_n = 0$.

Example: $\sum_{n=1}^{\infty} \frac{1}{n^2} + in^2$ Since $\lim_{n \to \infty} \frac{1}{n^2} + in^2 \neq 0$ therefore the series diverges.

Remark: Just because $\alpha_n \rightarrow 0$, this does not mean $\sum \alpha_n$ converges.

Example: $\sum_{1}^{\infty} \frac{1}{n} \quad \alpha_n = \frac{1}{n} \qquad \alpha_n \to 0$, but $\sum \frac{1}{n}$ diverges. Definition: $\sum_{1}^{\infty} \alpha_n$ is said to be <u>absolutely convergent</u> if the series $\sum_{n=1}^{\infty} |\alpha_n|$ converges.

Remark: Absolute convergence implies ordinary convergence ;

Ordinary convergence does not imply absolute convergence.

Example: $\sum_{1}^{\infty} \frac{(-1)^n}{n}$ converges, but $\sum \left|\frac{(-1)^n}{n}\right| = \sum \frac{1}{n}$ diverges.

Consider now functions $f_1(z)$, $f_2(z)$, ... all defined in a region R and the series $\sum_{n=1}^{\infty} f_n(z)$. For each z this is a series.

Theorem: (Ratio Test) For the series $\sum_{n=1}^{\infty} f_n(z)$ let

$$\lim_{n\to\infty} \frac{f_{n+1}(z)}{f_n(z)} = |R(z)|.$$

Then the given series converges absolutely for those values of z for which $0 \le |R(z)| < 1$; and diverges for those values of z for which |R(z)| > 1.

Remark: The values of z for which |R(z)| = 1 form the boundary of the region of convergence (set of all values of z for which the series converges). At these points the ratio test provides no information about the convergence of divergence of the series.

Example: Find the region of convergence of the series:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{z+1}{z-1} \right)^{n-1} = 1 + \frac{1}{2^2} \left(\frac{z+1}{z-1} \right) + \frac{1}{3^2} \left(\frac{z+1}{z-1} \right)^2 + \dots$$

Using the ratio test we have

$$\left| \left. rac{f_{n+1}(z)}{f_n(z)}
ight| = \left| \left. rac{rac{1}{(n+1)^2} \left(rac{z+1}{z-1}
ight)^n}{rac{1}{n^2} \left(rac{z+1}{z-1}
ight)^{n-1}}
ight| = rac{n}{(n+1)} \left| \left. rac{z+1}{z-1}
ight|.$$

Now

$$\lim_{n\to\infty} \left| \begin{array}{c} \frac{f_{n+1}(z)}{f_n(z)} \end{array} \right| = \left| \begin{array}{c} \frac{z+1}{z-1} \end{array} \right| = \left| \begin{array}{c} R(z) \right|.$$

Therefore the series certainly converges if

$$\left| \begin{array}{c} \frac{z+1}{z-1} \end{array} \right| < 1, \ {
m i.e.,} \ \left| \, z+1 \, \right| \ < \ \left| \, z-1 \, \right| \, .$$

Therefore z must lie to the left of the \perp bisector of the segment joining -1 and +1; i.e., z must lie in the left half of the complex plane.

Test gives no information on the boundary, i.e., for values of z on the imaginary axis. For z = ai (a any constant), we have for absolute value of the series that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left| \frac{z+1}{z-1} \right|^{n-1} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 which converges.

Since absolute convergence \rightarrow convergence \rightarrow series converges also on the imaginary axis. Therefore series converges $\forall z = x + yi$ such that $x \leq 0$.

<u>Uniform convergence</u>: Let $f_1(z)$, $f_2(z)$... all be defined in a region R and $S_n(z) = \sum_{i=1}^n f_i(z)$.

Definition: The series $\sum_{i=1}^{\infty} f_i(z)$ is said to <u>converge uniformly</u> to the function f(z) if, given $\in > 0 \exists$ a positive integer $N = N(\in)$ such that $|f(z) - S_n(z)| < \in$ for any n > N and any $z \in R$.

Note: If convergence is *not* uniform, then $N = N(\in, z)$.

Theorem: If $f_1(z)$, $f_2(z)$... are all continuous in R and if $\sum f_i(z)$ converges uniformly in R to f(z), then the sum f(z) is also a continuous function in R.