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Lecture XIII

Application of the Residue Theorem to the Evaluation of Real Integrals

A. I= ‘I(;% R(cosb, sinB)do.

Here R(s,t) is a rational function of s and £. We assume that R(cos6, sin@) is finite on
0<0 < 2.

Let z = €. Then the interval 0 < @ < 27 yields the curve C: | z| =1.

Now cosf = (e + e ) = 1(z+ 1) and sinf = 2 (z — %) ; also

dz = ie*d6 = izd6 or dd = (1)(%). Thus
I= iR [%(z+%) . z—%)] where C: | z | = 1.

I may be evaluated by residues.

cos260d6

2T
Example: Evaluate fo 1 2pcosb+p2

—1<p<l1

Note that by adding and subtracting 2p, the denominator of the integrand can be written
in either of two equivalent forms:

1—2pcosf+p?=1—2p+p?>+2p—2pcosd = (1 — p)?+ 2p(1 — cosh)
=1+4+2p+ p? —2p—2pcosfd = (1 + p)? — 2p(1 + cosh).

From the first of these it is clear that if 0 < p < 1, the denominator is different from zero
for all values of @; and from the second it is clear that if — 1 < p < 0, the denominator is
also different from zero for all values of 6. Therefore the integrand is finite on
0<f@<2mfor —1 < p<1. Now

621‘0_'_6721'9 Z2+Z72

cos20 = 5 = 5

Therefore the integral becomes:

f 22272 1 dz
2 1_2p(z-02-z_1)+p2 1z

C
2241 z dz
- - 222  z—pz2—p+p?z iz
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_ f (1+2Y)d=
= 2i22(1— —p)
-, 2i2*(1—pz)(2—p)
There are three poles in the integrand at O, %, andp. Now —1<p<1

so that % is outside of | z | = 1. Therefore we may disregard this pole. For the other two
poles we have:

_1: . 142* _ 14p*
Res =lim (2 — P) 320 p2)(z p) — 200G 7 °

The pole at O is second order and therefore

1424 ]

— 11 a 2
Res = lim dz [z 2i22(z—pz2—p+p?2)

p z—0

(z—pz2®>—p+p°2)(42°) — (1+2*) (1 —2pz+p?)

= iz_"z%) 2i(z—pz2—p+p?z)?
— (1+1o2
= 2ip?
_ . 1+p* 1+p%] _ 27p?
I=2mi (3 ~ ) 1o

B. Improper Integrals of Rational Functions

Consider L : f(z)dx where f(z) = % is a rational function and the degree of

[Q(z)] = [P(zx)] + 2. Suppose Q(x) has no real zeros. Such an integral is called an
improper integral since the interval of integration is not finite. We define

f_:f(:n)d:z: = lim L:f(x)dx

To evaluate this integral consider the contour integral

f f()dz
C

where C is below.
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Since f(z) is a rational function, this implies that f(z) = ggg has finitely many poles in
the upper half plane. These are the zeros of Q(2), say 21, ..., 2,. We choose r large

enough so that C encloses all of these zeros. Then

f f(z)dz= ff(z)dz+LZf(w)dx=27ri Zn: qus f(2).
C S j=1 J

Therefore

f: f(z)dz = 2mi Zn: Res f(z) — f f(2)dz.
Jj=1 J S

It turns out that [f(2)dz— 0 as r —oco. On S, if we let z=re®, then S is
5

represented by » = constant,0 < 0 < «. Since deg[Q(z)] = deg[P(z)] + 2. Hence

| £(2) | <& for | z| =r > 7o,

where 7y and k are sufficiently large. Hence

| ff(z)dz | <7%77'r'=’“77r for r > rg
s

and this — 0 as r — oo, so that

L:f(a:)dw = 27ri zn: Res f(2).
=1 %i
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Example: f_oo CETDICED) dx wherea,b > 0.

The poles of m are at z = =+ az, £ bi. Of these only z = at and z = b¢ lie in
the upper half plane. At z = a1 the residue is:

lim_ (z — at) z? = —a’ — a
z—ai (z—ai)(2+ai)(22+b%) ~ 2ai(—a?+b2) ~ 2i(a®—b?) °

Similarly, at z = b we have m.

Hence the value of the integral is: 27 [2i (a;‘_ ) + 2i(b2b_ 02)] = aLer .

C. L:f(a:)cos azx dxr and L:f(x)sin ax dx. Here f is as in B.
Note that

L:f(x)cos ardzx+1i L:f(a:)szn ar dr = L:f(x)ei“wdx.
The L : f(x)e*®dx may be treated as above. Thus

L Z: f(x)e**®dx = 27> _Residues of €’® f(x) at its poles in the upper half plane.

Therefore

L:f(w)cos azx dx
= — 27 ) imaginary parts of residues of e’® f(z) at its poles in upper half plane.

Similarly

f_:f(w)sin ax dx
= 27 Y real parts of the residues of €’® f(2) at its poles in upper half plane.

© cosaxdz — ° sinazdzx
Example. \me=%eak;ﬁww=0 a>0, £>0.

Now k‘jz—;; has only one pole in the upper half plane, namely a single pole at z = ik.
Therefore
iaz 7s . eiaz _ eika
JBes wie =lm (2= 1K) CopGrm = ik
Therefore
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oo iax R -
L £ dxr =27 S5 =

T _—ka
oo k?+z? 2ik k

e

and this yields the result.

Laplace Transforms

The Laplace Transform of a (real) function f(%) is given by

LIF®] = ¢(s) = [, e *f(t)dt
for all s such that this integral converges.

Example. f(t) = e*
LIF@)] = £le) = f; e e dt = [, Te - ar

.R —(s—a
= lim f e Dt dt = lim S—— G| R
—00 0 a—s 0

R—oc0

—(s—a)R_ .
e -1l - 1 if s > a.

= lim =
a—s s—a

R—co

Therefore L[e?] = -1

.
s—a

We may define an inverse operator £ ! where L 1[¢p(s)] = f(t) & L[f(t)] = &(s).
Thus

Laplace transforms are very useful in solving ordinary and partial differential equations.
To illustrate the power of the method, consider the problem:

%+y=e2t; y(0) = — 1.

We take Laplace transforms of both sides of the equation to get

L[W] + Lly] = L[e*] = 5

oo oo
Now £{%} = j(; Westdt = ye | ¥ + s L ye “dt.
Let dv = %dt andu = e * sothatdu = — se *'dt and v = y. Then

L[y'] = — y(0) + sL[y]. The D.E. then leads to

(s+DLp+1=5 H 1=
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or LIy = w261

—s+3 A + B

4
(¢—2)(s+1) — s-2 =A s=—-1— 42 =B

— 1
s+1 §=2 — 3

—4

1 —1
L[y] 3 +3-?-1 - 5__22t+4e—t}y +y—€

This method may be extended to higher order equations and to partial differential
equations. Note that in order to get y(¢) we had to find £ '[¢(s)]. There exists a general
approach to finding £ 1[¢(s)] which is based on the complex variable theory we have
developed.

Let ¢(2) be a function of z analytic on the line x = a and in the entire half plane R to the
right of this line. Moreover, let | ¢(z) | — O uniformly as z becomes infinite through
this plane. Let s be any point in the half plane R. We can choose a semicircular contour
C = C1|JC> as in the figure below and apply the Cauchy Integral Formula.

¥
b
Ca
a x
Ci
#0) = i § Lae =3k [, Eae+ 3% [ Las

It can be shown that llm = f ¢(z) dz = 0 so that

a—+ioco z
¢(S) 27!'7«\1:1, 00 f(z)d

Now we shall try to determine the function f(¢) whose Laplace Transform is ¢(s).
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£ = £ = £ & [ $ax)

Hence

a+i00 a+ioco

(&) =& E—l{f%)}dz =L $(2)L {5 }d=

a—1%00 a—1i00

a-+i00
= % f o(2)edz.

a+ioco
since £ ! only operates on the variable s.

Thus f(¢) is given by a line integral in the complex plane taken along a vertical line to the
right of all singularities of the transform ¢(s). This complex line integral may be evaluated
by the method of residues. A semicircular contour whose diameter is the segment from
a — ib to a + ¢b and whose radius b is large is used. Thus

Theorem: If the Laplace Transform ¢(s) is an analytic function of s except at a finite

number of poles each of which lies to the left of the vertical line Re s = a and if s¢(s) is
bounded as s becomes infinite through the half plane Re z < a, then

L Hop(s)} = > residues of ¢(s)e at each of its poles.

Remark. Use
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Example: What is £71 [;] ?

(s+a)?+b2
Using the theorem we need only compute the residues of ﬁ. There are only two
first order poles at — a *=¢b. Ats = — a + i¢bwe have lim b
s——a+02
lim [s—(—a+ib)]e” _ elati)t
s——a+bi[s—(—a+ib)][s—(—a—ib)] —  2ib
At s = — a — ib we have:
. [s—(—a—ib)]e* _ ela-ibyt
JAm e et s (a8 — 2k

Therefore

. (—a+ib)t (—a—ib)t o bt __ _—ibt
F@) =L b)) = S + S = et { e ]

e *sinbt
—F .

b
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