Ma 529 Lecture 2

Implicit Functions • Jacobian Determinants.

An equation of the form

(1)
$$f(x, y, z, ...) = 0$$

involving any finite number of variables, where f possesses first partials, can be considered as determing one of the variables, say z, as a function of the others. \Rightarrow

$$z = \phi(x, y, ...)$$

in some region about any point where (1) is satisfied and $\frac{\partial f}{\partial z} \neq 0$. In such a case (1) defines z as an <u>implicit</u> function of the other variables. If we consider other variables as independent, we can determine the partial derivative of z with respect to any one of them, without solving <u>explicitly</u> for z, by differentiating (1) partially with respect to that variable. To get $\frac{\partial z}{\partial x}$ we have from (1)

$$rac{\partial f}{\partial x}+rac{\partial f}{\partial z}\;rac{\partial z}{\partial x}=0\;\;\Rightarrow\;\;rac{\partial z}{\partial x}=-rac{\partial f/\partial x}{\partial f/\partial z}\;.$$

Note: denom $\neq 0$.

If n and k variables are related by n eqs. it is <u>usually</u> possible to consider n of the variables as functions of the remaining k variables. However, this is not <u>always</u> possible. For example, suppose x, y, u, v are related by two equations

(2)
$$f(x, y, u, v) = 0$$
 and $g(x, y, u, v) = 0$.

If these equations determine u and v as differentiable functions of x and y, we may differentiate the system with respect to x and y, considering these two vairables to be independent, \Rightarrow

(3) $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = 0$ and $\frac{\partial g}{\partial x} + \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial x} = 0$ (4) $\frac{\partial f}{\partial y} + \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} = 0$ and $\frac{\partial g}{\partial y} + \frac{\partial g}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial y} = 0$

Solving (3) for u_x and v_x and (4) for u_y and $v_y \Rightarrow$

$$u_x$$
 = $- rac{egin{bmatrix} f_x & f_v \ g_x & g_v \end{bmatrix}}{\Delta}$ v_x = $- rac{egin{bmatrix} f_u & f_x \ g_u & g_x \end{bmatrix}}{\Delta},$

WinEXP40\Ma529\Lec2.wxp

$$u_y = - rac{\left| egin{smallmatrix} f_y \ f_v \ g_y \ g_v \end{smallmatrix}
ight|}{\Delta} \qquad v_y = - rac{\left| egin{smallmatrix} f_u \ f_u \ g_u \ g_v \end{smallmatrix}
ight|}{\Delta}$$

It must be assumed that $\Delta \neq 0$. Unless $\Delta \neq 0$, the desired partial derivatives cannot exist uniquely, so that u and v cannot be differentiable functions of x and y. The determinant Δ is known as the Jacobian of f and g with respect to u and v and:

$$\frac{\partial(f,g)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \\ \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} \end{vmatrix}.$$
 This may be extended to more variables. For example,

$$\frac{\partial(f,g,h)}{\partial(u,v,w)} = \begin{vmatrix} f_u & f_v & f_w \\ g_u & g_v & g_w \\ h_u & h_v & h_w \end{vmatrix} \text{ using our notation, if } \frac{\partial(f,g)}{\partial(u,v)} \neq 0$$
(5)
$$u_x = -\frac{\frac{\partial(f,g)}{\partial(x,v)}}{\frac{\partial(f,g)}{\partial(u,v)}}.$$

In general if n+k variables are related by n equations of the form $f_1 = 0$, $f_2 = 0, ..., f_n = 0$ where the functions f_k have continuous first partials, then any set of n variables may be considered as functions of the remaining k variables in some neighborhood of a point where the n equations hold, if the Jacobian of the f's with respect to the n dependent variables is not zero at that point.

Example:
$$f = x + y + z = 0$$

 $g = x^2 + y^2 + z^2 + 2xz - 1 = 0.$

where $\Delta =$

Can x and y be considered as functions of z?

$$\operatorname{Now} \left. rac{\partial (f,g)}{\partial (x,y)} = \left. egin{pmatrix} 1 & 1 \ 2x+2z & 2y \end{bmatrix}
ight| = \ 2(x+z-y).$$

Thus, except on the surface x + z - y = 0, x and y can be considered as functions of z. That is, z can be taken as the independent variables. When y = x + z, the equations become $2(x+z)^2 = 1$ and 2(x+z) = 0 and hence incompatible. To see if x and z can be taken as the dependent variables, we calculate the Jacobian:

$$\frac{\partial(f,g)}{\partial(x,z)} = \begin{vmatrix} 1 & 1 \\ 2x + 2z & 2x + 2z \end{vmatrix} = 0.$$
 Since the det is $\equiv 0$ we see x and z cannot be taken

as the dependent variables. This is also readily verified directly since both equations involve the combination x + z and only y.

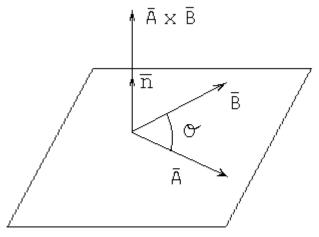
Vector Analysis

Review: Let $\vec{A} = \vec{a_1i} + \vec{a_2j} + \vec{a_3k}$; $\vec{B} = \vec{b_1i} + \vec{b_2j} + \vec{b_3k}$ be vectors in x, y, z space. Then

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos\theta \text{ or } \vec{A} \cdot \vec{B} = \sum_{i=1}^{3} a_i b_i \text{. Here } |\vec{A}| = \left[\sum_{i=1}^{3} a_i^2\right]^{\frac{1}{2}} = (\vec{A} \cdot \vec{A})^{\frac{1}{2}}$$

AISO

 $\vec{A} \times \vec{B} = \vec{n} |\vec{A}| |\vec{B}| \sin\theta$. \vec{n} is a unit vector \perp to the plane determined by \bar{A} and \bar{B} .



Note: $\vec{A} \times \vec{B} = \vec{0}$ if \vec{A} and \vec{B} are parallel, $\theta = 0^{\circ}$ or 180°

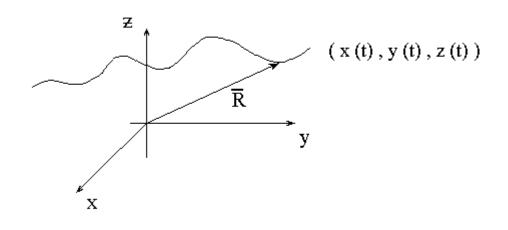
$$ec{A} imesec{B}= egin{bmatrix} ec{j} & ec{j} & ec{j} & ec{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{bmatrix}.$$

Lemma: If $\vec{A} \cdot \vec{B} = 0$ then either $\vec{A} = 0$, $\vec{B} = 0$ or $\vec{A} \perp \vec{B}$. We shall assume the knowledge of cross and dot products. Recall that:

$$ec{A} \cdot (ec{B} imes ec{C}) = egin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix}.$$

Vector Functions of One Variable

Consider a particle P moving in X, Y, Z space along the curve C. Then C: x(t), y(t), z(t).



Let \vec{R} be the vector from the origin to the particle at time t. Then

$$\vec{R}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}.$$

We say \vec{R} is a function of t. In general if $\vec{V} = \vec{V}(t)$ is a function of t, then

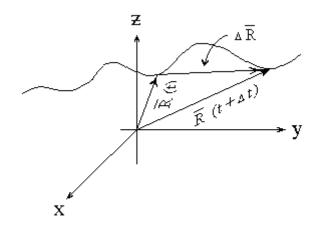
$$\vec{V} = \vec{V}(t) = V_1(t)\vec{i} + V_2(t)\vec{j} + V_3(t)\vec{k}.$$

We say $\vec{V}(t)$ is continuous if V_1, V_2 , and V_3 are continuous. If V_1, V_2 , and V_3 are all differentiable, we define

$$\frac{d\vec{V}}{dt} = \frac{dV_1}{dt}\vec{i} + \frac{dV_2}{dt}\vec{j} + \frac{dV_3}{dt}\vec{k}.$$

II - 4

Remark: If \vec{R} is the curve vector above, then consider \vec{R} at time t and $t + \Delta t$.



Note that $\frac{\Delta \vec{R}}{\Delta t}$ has the same direction $\Delta \vec{R}$ since $\Delta t > 0$ is a scalar. As $\Delta t \to 0$ $\frac{\Delta \vec{R}}{\Delta t}$ goes to the direction of the tangent vector.

Example: At what point or points is the tangent to the curve $x = t^3$, $y = 5t^2$, $z = 10t \perp$ to the tangent at point when t = 1.

C may be represented as $\vec{R}(t) = t^3 \vec{i} + 5t^2 \vec{j} + 10t \vec{k}$. The tangent to C at any time t is

$$\frac{\vec{dR}}{dt} = 3t^{2}\vec{i} + 10\vec{tj} + 10\vec{k}.$$

At t = 1 the tangent is $\vec{W} = 3\vec{i} + 10\vec{j} + 10\vec{k}$. To find where $\frac{d\vec{R}}{dt}$ is \perp to \vec{W} we set the dot product equal to 0. $\frac{d\vec{R}}{dt} \cdot \vec{W} = 9t^2 + 100t + 100 = 0$. $\Rightarrow t = -\frac{10}{9}, -10$. This yields the points $\left(\frac{-1000}{729}, \frac{500}{81}, \frac{-100}{9}\right)$ and (-1000, 5000, -100).

If \vec{U} and \vec{V} are two vector functions both differentiable, then it may readily be shown that:

$$\frac{d}{dt}(\vec{U}\cdot\vec{V}) = \frac{d\vec{U}}{dt}\cdot\vec{V} + \vec{U}\cdot\frac{d\vec{V}}{dt}$$
$$\frac{d}{dt}(\vec{U}\times\vec{V}) = \frac{d\vec{U}}{dt}\times\vec{V} + \vec{U}\times\frac{d\vec{V}}{dt}.$$

If $\vec{U} = u_1\vec{i} + u_2\vec{j} + u_3\vec{k}$, $\vec{V} = v_1\vec{i} + v_2\vec{j} + v_3\vec{k}$, and $\vec{W} = w_1\vec{i} + w_2\vec{j} + w_3\vec{k}$. Then

$$(*)_{\frac{d}{dt}} \begin{bmatrix} \vec{U} \cdot (\vec{V} \times \vec{W}) \end{bmatrix} = \frac{d\vec{U}}{dt} \cdot \vec{V} \times \vec{W} + \vec{U} \cdot \frac{d\vec{V}}{dt} \times W + \vec{U} \cdot \vec{V} \times \frac{d\vec{W}}{dt}$$

Since

$$ec{A} \cdot (ec{B} imes ec{C}) = egin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix}$$
 (*)

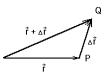
 \Rightarrow

$rac{d}{dt}$	$oldsymbol{u}_1$	u_2	u_3	=	$rac{du_1}{dt}$	$rac{du_2}{dt}$	$rac{du_3}{dt}$	+	$ u_1 $		$\left. rac{u_3}{rac{dv_3}{dy}} ight +$			u_2	u_3
	v_1	v_2	v_3		v_1	v_2	v_3		$rac{dv_1}{dt}$				v_1	v_2	v_3
	w_1	w_2	w_3		w_1	w_2	w_3		$ w_1 $	w_2	w_3		$rac{dw_1}{dt}$	$rac{dw_2}{dt}$	$\left \frac{dw_3}{dt} \right $

This is an interesting identity for 3×3 determinants. It is readily extendable to $n \times n$ determinants.

Vector Operators--The operator ∇

Let $\Phi(x, y, z)$ be a scalar function with first partials Φ_x , Φ_y , Φ_z in some region of x, y, z-space. let $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ be the vector drawn from origin to the point P = (x, y, z). Suppose we move from P to a nearby point $Q = (x + \Delta x, y + \Delta y, z + \Delta z)$.



Then Φ will change by an amount $\Delta \Phi$ where

$$\Delta \Phi = \Phi_x \Delta x + \Phi_y \Delta y + \Phi_z \Delta z + \epsilon_1 \Delta x + \epsilon_2 \Delta y + \epsilon_3 \Delta z$$

where $\epsilon_1, \epsilon_2, \epsilon_3 \to 0$ as $Q \to P$. If we divide the change $\Delta \Phi$ by the distance $\Delta s \equiv |\Delta \vec{r}|$ between P and Q, we obtain a measure of the rate at which ϕ changes when we move from P to Q

$$\frac{\Delta\Phi}{\Delta s} = \phi_x \; \frac{\Delta x}{\Delta s} + \phi_y \; \frac{\Delta y}{\Delta s} + \phi_z \; \frac{\Delta z}{\Delta s} + \epsilon_1 \; \frac{\Delta x}{\Delta s} + \epsilon_2 \; \frac{\Delta y}{\Delta s}$$

Example. If $\Phi(x, y, z)$ is the temperature at the general point P(x, y, z) then $\frac{\Delta\Phi}{\Delta s}$ is the average rate of change in temperature per unit length at the point P in the direction in which Δs is measured.

The limiting value of $\Delta \Phi / \Delta s$ is $Q \rightarrow P$ along the segment PQ is called the derivative of Φ in the direction PQ or simply the <u>directional derivative</u> of Φ . Since $\epsilon_1, \epsilon_2, \epsilon_3 \rightarrow 0$ as $Q \rightarrow P \Rightarrow$

(1)
$$\frac{d\Phi}{ds} = \frac{d\Phi}{dx} \frac{dx}{ds} + \Phi_y \frac{dy}{ds} + \Phi_z \frac{dz}{ds}$$

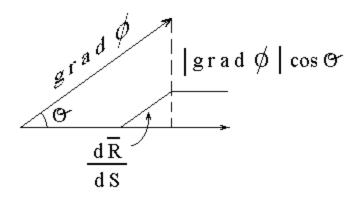
Remark. The first factor in each product in (1) depends only on Φ and the point P. The second factor is independent of Φ and depends only on the direction in which the derivative is being computed. \Rightarrow we write

$$\frac{d\Phi}{ds} = (\Phi_x \vec{i} + \Phi_y \vec{j} + \Phi_z \vec{k}) \cdot \left(\frac{dx}{ds} \vec{i} + \frac{dy}{ds} \vec{j} + \frac{dz}{ds} \vec{k}\right) = (\Phi_x \vec{i} + \Phi_y \vec{j} + \Phi_z \vec{k}) \cdot \frac{d\vec{r}}{ds}.$$

The vector functions $\Phi_x \vec{i} + \Phi_y \vec{j} + \Phi_z \vec{k}$ is known as gradient of Φ or grad Φ .

Thus $\frac{d\Phi}{ds} = (grad\Phi) \cdot \frac{d\vec{r}}{ds}.$

Remark. The significance of $grad\Phi$. Notice that Δs is length of $\Delta \vec{r} \Rightarrow \frac{d\vec{r}}{ds}$ is a unit vector. Therefore $grad\Phi \cdot \frac{d\vec{r}}{ds}$ is just the projection of $grad\Phi$ in the direction of $\frac{d\vec{r}}{ds} \Rightarrow grad\Phi$ has property that its projection in any direction is equal to the derivative of Φ in that direction. Since the maximum projection of a vector is the vector itself, it is clear that $grad\Phi$ extends in the direction of the greatest rate of change of Φ and has that rate of change for its length.



<u>Notation</u>: Often write $grad\Phi = \left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)\Phi \Rightarrow grad\Phi = \nabla\Phi$ where

$$\nabla = \overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}. \text{ Thus } \frac{d\Phi}{ds} = \nabla \Phi \frac{d\overrightarrow{r}}{ds}.$$

Example. What is the directional derivative of the function $\Phi(x, y, z) = xy^2 + yz^3$ at (2, -1, 1) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$?

$$\nabla \Phi = \frac{\partial}{\partial x} (xy^2 + yz^3)\vec{i} + \frac{\partial}{\partial y} (xy^2 + yz^3)\vec{j} + \frac{\partial}{\partial z} (xy^2 + yz^3)\vec{k}$$
$$= y^2\vec{i} + (2xy + z^3)\vec{j} + 3yz^3\vec{k}$$

$$abla \Phiig|_{(2,-1,1)}=ec{i}-ec{3j}-ec{k}.$$

The required directional derivative is the projection of this in the direction of the given vector. We need a unit vector in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$. \Rightarrow

$$\vec{\frac{i+2j+2k}{\sqrt{1+4+4}}} = \frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$$

$$\Rightarrow \frac{d\Phi}{ds}\Big|_{(2,-1,1)} = \nabla\Phi\Big|_{(2,-1,1)} \cdot \left(\frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}\right) = (\vec{i} - \vec{3j} - \vec{3k}) \cdot \left(\frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}\right) = -\frac{11}{3}.$$

Let us now consider the operator $\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$. Given any other vector $\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}$ where $\vec{F} = \vec{F}(x, y, z)$ we can consider $\nabla \cdot \vec{F}$, called the <u>divergence</u> of \vec{F} , and $\nabla \times \vec{F}$, called the <u>curl</u> \vec{F}

$$\nabla \cdot \vec{F} = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) \cdot \left(F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}\right) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = div \vec{F}$$

$$\nabla \times \vec{F} = curl \vec{F} = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) \times \left(F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}\right)$$

$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \vec{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \vec{j} + \left(\frac{\partial F_2}{\partial y} - \frac{\partial F_1}{\partial y}\right) \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} .$$