Ma 529
Lecture IV

Green's Theorem

There is a remarkable theorem that identifies a double integral over a region R with a
line integral around its boundary. It is known as Green's Theorem.

Theorem: Let P(x,y) and Q(z,y) be functions of two variables which are continuous
and have continuous first partial derivatives in some rectangular region H in the x,
y — plane.

If C is a simple, closed, piecewise smooth curve lying entirely in H, and if R is the
bounded region enclosed by C, then

)
Corollary: Let R be a bounded region in the =,y — plane. Then the area of R is given by

A=1 fc(:z:dy — ydzx)
where C is the boundary of R

Proof: Let P = —y/2and Q = /2 in Green's Theorem. =

fc(%ydx + %dy) =ffR (% + %) dA = ffRdA=areaofR

Example: Find the area of the region A bounded by the curves y = x3 and y = x2.
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Let C = C7 + C5. Then C is a closed curve which bounds R. We shall use
x as the parameter on C and the formula in the corollary. =

A = %fc(a:dy — ydx)
_1 1
= %fcl[a:(&z:z) dr — z*dz] + } f02 [z (%x 2) dr — 2 dx]
1 1y, 3 1 [0 1 5
=§‘I(;2xdx—z‘£w2dw=ﬁ
Example: Evaluate the line integral f;,(x?’ + 2y) dz + (4= — 3y?) dy
where C is the ellipse 2—2 + & =1
Solution: P=23+2y, Q =4z —3y> = Q, = 4,P, = 2
By Green's Theorem: fCP dr + Qdy = ffR 4—2)dA = 2ffdA

Therefore we need the area of the ellipse which is 7 ab. = f = 2 m ab.

Example. Verify Green's theorem for fc 3xydr + 2x2dy where C is the curve which
bounds the region R above by y = = and below by y = 22 — 2x .
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Since P = 3zy and Q = 2z?, we see that Q, — P, = 4z — 3z = z. Thus
3 x
JJ(@.—Byda= [ [, zdyde=2
C=C,+0C, Ci:y=x>—2x Cory=zz 0<z<3

3 3
On Ci: j;,lde + Qdy = j(; 3z(x? — 2x)dx + j; 222 (2x — 2)dzx

0 0
On Cs: ‘l;,dear:+Qdy= _l:; 3z(z)dx + j?: 2z%dx

A straight forward calculation shows that the sum of these last two expressions also equals
27
2

Example. Use Green's theorem to evaluate
L (2v + Vo1 2) da+ (52 +eretenv)dy
where C is the circle z°> +y* =4.NowQ, — P,=5—2=3. =

J | 3dA = 3(area of circle of rad 2) = 3(4r) = 12

2+y?<4

IV-3



Surface Integrals

There are three common ways of defining a surface:

I. z = p(z,y) (1) as above. Here ¢ must be a single-valued, continuous function defined
on a region of the =, y — plane.

II. Often surfaces are represented by equations of the form F'(z,y,z) = 0 (2).

If (zo, Yo, 20) is a point on such a surface, we can in many cases represent the portion of
the surface near (zo, %o, 20) in a form analogous to (1) by solving (2) for z,y, or z in
terms of the other two variables.

III. Itis frequently convenient to describe a surface by a parametric representation.

Ex. z=asinucosv y=asitnusinv. z=acosu

Here v and v are independent parameters. This represents a sphere whose equation is
2 + y? + 22 = a2 . This equation is gotten by elimination of  and v. Note v and v are
the spherical coordinates ¢ and 6.

The set of equations
z=a(u,v) y=y(u,v) z=2(uv) @
where u and v are parameters, represents an arbitrary surface. This can be seen by

eliminating v and v from (3), a procedure that leads to an equation of the form
F(z,y,z) = 0 which is case II.

In terms of the radius vector »r = xi + yj + zk equation (3) for the surface may
be written as

4 =_7"(u, v) = z(u, v)_z" + y(u, v)? + 2(u, 'u)7c’

From the parametric equations for a surface it is possible to establish a formula for ds, the
element of surface area. In general, ds is obtained by calculating the area between the
curves corresponding to:

u = ug, ug + du, v = vg and vy + dv.

For infinitesimal areas this element will be essentially planar and have area

ds= | AB x Aa | , where the vectors are the sides of the differential parallelogram
shown in the diagram.
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Li=ddy

b= b

VY

B Vo
Vv, /A / Ug+du

A =?(u0,v0) B =7(u0 + du,vp) =?(u0,vo) + %(uo,'vo)du + - -
C =7"(u0,v0 + dv) =?(u0,vo) + %(uo,vo)dv+ - -
Thus AB =%du AC =%dv =>ds=|%x%|dud'v

Hence, in general, we have for a surface given by

z=z(u,v) y=1y(u,v) =z=z(u,v) that
ffg f(z,y,2)ds = fjé; f(u,v) |7y X7, | dudv, where G is the image of the
surface S in the u, v-plane.
Example. Suppose the surface is given by the representation z = ¢(x, y) (case I). Let
- e e -
r=u, y=v = z=p(u,w) Then r(u,v) =ui +v5 + p(u,v)k

also represents the surface. Thus

- - - - - - -
_"?u=7'+(;0uk; 7!11=.7"|_(P'uk; 7?'u,x??'u:k_(Pu'l:_901).7.
ds= |Tu X7y | dudv = [1+g05+9012)]%dud'v. But since u = x, v = y we get
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ds=[1+¢> +<pz2/]% dz dy.

for a surface given by z = p(z, y).

Example. Find the surface area of the paraboloid z = 2 + y? below the plane
z=1.

The surface S projects into the interior of the circle z2 + y?> = 1. This is R. Here
z=p(z,y) = 2> + 9>

Surfacearea = [ [1-dS = [[(1+ o2+ 905)% dydzx
s R

Here R is circle z2 + y? < 1. Thus the surface area is given by

ff\/1+4a:2+4y2dyd:c
R

To evaluate this double integral we shall use polar coordinates. Then

Surface area = f f vV 4r2 4+ 1 rdrdf = % _[(;277 f(;l vV4ar2 4+ 1 rdrdf
R

— L)t |lde= L [T (58 —1)d6 =T (55 —1).
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Cylindrical and Spherical Coordinates

Cylindrical coordinates are related to Cartesian coordinates via
x=1rcosd y=rsind z==z

The relationship between a volume element in the two systems is
dV = dzdydz — rdrdfdz, thatis [ [ [dV = [ [ [rdrd6dz

Spherical coordinates are related to Cartesian coordinates via x,y, z = p, 0, ¢ where
xr = pcosfsing 1y = psinfsing z=pcosp 0<0<2w 0<Pp<m7
The relationship between a volume element in the two systems is
dV =dxdydz — p?singdpd0dl, that is [[[dV = [ [ [p?sinpdpd6db. It is

important to keep in mind that ¢ is measured from the z axis and thus varies only from O
to .
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Example. Find the volume above the cone 22 = z2 + y? and inside the sphere
% + y? + 2% = 2a=.

We shall use spherical coordinates.

Cone: 22 = z2 4 92
z = pcos¢p x = pcoslsing 1y = psinbBsing
The equation of the cone = p2cos?¢p = p2cos?0sin?¢p + p?sin?fsin?¢p or
cos’¢p = sin?¢p
= tang=1 = ¢= £45°=Tor¢p =% +mw =22

Sphere: 2 + y?> + 22 — 2az =0 or z? + y?> + (2 — a)? = a®. Center at (0,0, a).
= p? — 2apcosp = 0 or p = 2acose.
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We see that ¢ goes from O to 7, 6 from O to 27r. and p from O to p = 2acos¢.
Hence

Volume = fffpzS?:’nd)d‘/paqﬁ — ‘](;ﬁ .I(;Zacostb.](;%r p2sin¢d0dpd¢

Example. Consider a sphere of radius a centered at the origin. We shall find its surface
area. Now using spherical coordinates we have

T=a8inNucosv Y=aSinusinv 2z =acosuy

= r=asitnucosvi +asinusinvj +acosuk

-

—’
2usinvj +sinucosuk)

Ty XT, =a’(sin2ucosvi + sin

= |Pux7,| =a2sinu ds = a?sin u dudv
2
Thus f£d3= f£,a2 sin u dudv = OW Owa,2 sin ¢ do

= 4 7 a®? = surface area of sphere

Surface Elements

Suppose R is a closed rectangular region in the w,v —plane a < u <b,
c < v < d. Then the equations z = z(u,v) y=y(u,v), z= z(u,v), wherez,y,z
are continuous, define a set S which is part of a surface in =, y, z — space. If the functions
x,y, z are also 1-1, i.e. distinct points of 2 are not mapped into the same point of .S, then
the points of S in z,y, z — space comprise a simple surface element. A simple surface
element may be thought of as any configuration which may be obtained from a rectangular
plane region by continuous deformation (bending, twisting, stretching, shrinking) without
tearing and without bringing together any points which were originally distinct.

If S is a simple surface element corresponding to a rectangular region R in the
u, v — plane, the points of S which correspond to the boundary of R form what is called
the boundary S. Other points of S are called interior points.

All surfaces may be thought of as being built up out of simple surface elements by
matching together portions of the edges of the elements. The boundary of a surface
consists of the unmatched edges of its surface elements. If there are no unmatched edges,
there is no boundary. For example, a hemisphere has a boundary consisting of its
equatorial rim. An entire sphere, an ellipsoid, and the surface of a cube are examples of
surfaces without boundary.

A surface is smooth if the functions which parametrize it are continuously
differentiable. If a surface is smooth and has no boundary, it is called a smooth surface
without boundary. If a surface is given by F'(z,y,z) = 0, then the surface is smooth
without boundary if VF' # O for all =, y, z on the surface.
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Example. Consider the surface F(z,y, z) = 422 + 9y? — 222 — 8 = 0. Then

- - -
VF =8zt +18yj —4zk and VF =0 = x =y = z=0. But (0,0,0) is not on
this surface. => F'is smooth without boundary.

Example. Evaluate f j:; f(z,y, z) ds where f = x? and S is the part of the cone

22 = x? + y? between the planes z = 1 and z = 2.

We shall use spherical coordinates x = psing cos, y = psing sinf, z = pcosp
In spherical coordinates the equation of the cone is ¢ = 7. Lettingu =60,v=p = we

have for =, y, and z on the surface of the cone that

o(u,v) = z(6,p) = Y2pcos 05 y(u,v) =y(6,p) = LPpsin; z=%p
where 0 <@ <2rand1<2<2 = /2<p<2+2
=>?=x?+y?+ 75={pcos€z+{pszn03+{pk
= P,=To= — ipszn0z+ ‘égpcosej
=>7"1,=7?p= % 0302+‘/_szn03+\/_
=>7"9><7"p 2p[cost +szn03—k]and|rgxrp| ﬁp
fL z?ds= \2/—;/5‘];)2 2p 00320\/_pd0dp— \é— (0+5m20)|2”dp

=15 \/or
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