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Ma 529
Lecture IV

Green's Theorem

There is a remarkable theorem that identifies a double integral over a region    with aV
line integral around its boundary. It is known as Green's Theorem.

Theorem:  Let  and  be functions of two variables which are continuousTÐBß CÑ UÐBß CÑ
and have continuous first partial derivatives in some rectangular region H in the Bß
C  plane.
     If  is a simple, closed, piecewise smooth curve lying entirely in , and if  is theG L V
bounded region enclosed by , thenG

) ' '
 G V

`U
`B `C

`Tš ›  TÐBß CÑ .BUÐBß CÑ.C œ  .E    

Corollary:  Let  be a bounded region in the plane. Then the area of  is given byV BßC  V

E œ ÐB .C  C .BÑ"
# G

 )
where  is the boundary of G V

Proof:  Let  and   in Green's Theorem. T œ  CÎ# U œ BÎ# Ê

              = area of ) ' ' ' '
G V V

C
# # # #

B " "Š ‹ Š ‹.B  .C œ  .E œ .E V 

Example: Find the area of the region  bounded by the curves  and .E C œ B C œ B$ "
#
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Let  . Then  is a closed curve which bounds . We shall useG œ G G G V" #

B G Ê as the parameter on  and the formula in the corollary. 

       E œ ÐB .C  C .BÑ"
# G
)

              œ ÒBÐ$B Ñ .B B .BÓ  ÒB B .B B .BÓ" " "
# # #G G

# $ ' '
" #

" "
# #Š ‹

                 œ #B .B  B .B œ" " &
# % "#

" !

! "
$' '

  
"
#

Example:  Evaluate the line integral ) G
$ #ÐB  #CÑ .B Ð%B $C Ñ .C

where  is the ellipse     G  œ "B
+ ,

C#

# #

#

Solution:        ,   T œ B  #Cß U œ %B $C Ê U œ % T œ #$ #
B C

By Green's Theorem:          ) ' ' ' '
 G V
T .B  U .C œ Ð% #Ñ .E œ # .E

Therefore we need the area of the ellipse which is .    .1 1+, Ê œ # +,)
Example.  Verify Green's theorem for     where    is the curve which)

G
#$BC.B  #B .C G

bounds the region  above by    and below by   .V C œ B C œ B  #B#
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Since   and  , we see that  . ThusT œ $BC U œ #B U T œ %B $B œ B#
B C

             ' ' ' 'ÐU T Ñ .E œ B .C.B œB C
$

!

B

B #B
#(
%  #

                             G œ G G G À C œ B  #B G À C œ B ! Ÿ B Ÿ $" # " #
#

On       G À T.BU.C œ $BÐB  #BÑ.B  #B Ð#B #Ñ.B" G ! !

$ $
# #' ' '

   

  

"

On          G À T.BU.C œ $BÐBÑ.B  #B .B# G $ $

! !
#' ' '

   #

A straight forward calculation shows that the sum of these last two expressions also equals
#(
% .

Example.  Use Green's theorem to evaluate

                 '
 G

$ +<->+8 CŠ ‹È#C  * B .B Ð&B / Ñ.C

where    is the circle  . Now . G B  C œ % U T œ & # œ $ Ê# #
B C

   (area of circle of rad 2)' '
B C Ÿ%# #

$.E œ $ œ $Ð% Ñ œ "#1 1
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Surface Integrals

There are three common ways of defining a surface:

I.  (1) as above.  Here  must be a single-valued, continuous function definedD œ ÐBß CÑ: :
on a region of the plane.Bß C 

II.  Often surfaces are represented by equations of the form     (2).JÐBß Cß DÑ œ !
If  is a point on such a surface, we can in many cases represent the portion ofÐB ß C ß D Ñ! ! !

the surface near  in a form analogous to (1) by solving (2) for  or  inÐB ß C ß D Ñ Bß Cß D! ! !

terms of the other two variables.

III.  It is frequently convenient to describe a surface by a  representation.parametric

Ex.           .   B œ + =38 ? -9= @ C œ + =38 ? =38 @ D œ + -9= ?

Here  and  are independent parameters.  This represents a sphere whose equation is? @
B  C  D œ + ? @ ? @# # # # .  This equation is gotten by elimination of  and .  Note  and  are
the spherical coordinates  and .9 )

 The set of equations

                          (3)B œ BÐ?ß @Ñ C œ CÐ?ß @Ñ D œ DÐ?ß @Ñ

where  and  are parameters, represents an arbitrary surface.  This can be seen by? @
eliminating  and  from (3), a procedure that leads to an equation of the form? @
JÐBß Cß DÑ œ ! which is case II.

In terms of the radius vector    equation (3) for the surface may< œ B3  C4  D5p p p p

be written as

  < œ < Ð?ß @Ñ œ BÐ?ß @Ñ3  CÐ?ß @Ñ4  DÐ?ß @Ñ5p p p p p

From the parametric equations for a surface it is possible to establish a formula for , the.=
element of surface area.  In general,  is obtained by calculating the area between the.=
curves corresponding to:

                and .? œ ? ß ?  .?ß @ œ @ @  .@! ! ! !

For infinitesimal areas this element will be essentially planar and have area
.= œ ± EF ‚EG ±

Ä Ä
,  where the vectors are the sides of the differential parallelogram

shown in the diagram.
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         E œ < Ð? ß @ Ñ F œ < Ð?  .?ß @ Ñ œ < Ð? ß @ Ñ  Ð? ß @ Ñ.?  † †p p p
! ! ! ! ! ! ! !

`<Ä

`?

              G œ < Ð? ß @  .@Ñ œ < Ð? ß @ Ñ  Ð? ß @ Ñ.@  † †p p
! ! ! ! ! !

`<p

`@

Thus                     EF œ .? EG œ .@ Ê .= œ ± ‚ ± .? .@
Ä Ä`< `< `< `<p p p p

`? `@ `? `@

Hence, in general, we have for a surface given by

B œ BÐ?ß @Ñ C œ CÐ?ß @Ñ D œ DÐ?ß @Ñ             that

' ' ' '
  W K ? @0ÐBß Cß DÑ .= œ 0Ð?ß @Ñ ± < ‚ < ± .?.@ Kp p   , where  is the image of the

surface  in the -plane.W ?ß @

Example. Suppose the surface is given by the representation  (case I). LetD œ ÐBß CÑ:

B œ ?ß C œ @ Ê D œ ? @Ñ < Ð?ß @Ñ œ ?3  @4  Ð?ß @Ñ5p p p p
    ( ,    Then     : :

also represents the surface. Thus

< œ 3  5 à < œ 4  5 à < ‚ < œ 5  3  4p p p pp pp p pp p
? ? @ @ ? @ ? @: : : :        

.= œ ± < ‚ < ± .? .@ œ Ò"  Ó .? .@ ? œ Bß @ œ Cp p
? @

# #
? @    +   .  But since   we get: :

"
#
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.= œ Ò"  Ó .B .C: :# #
B C +   ."

#

for a surface given by .D œ ÐBß CÑ:

Example.  Find the surface area of the paraboloid  below the planeD œ B  C# #

D œ ".

The surface  projects into the interior of the circle .  This is . HereW B  C œ " V# #

D œ ÐBß CÑ œ B  C: # #.

Surface area  œ " † .W œ Ð"  Ñ .C.B' ' ' '
W V

# #
B C: :

"
#

    

Here  is circle . Thus the surface area is given byV B  C Ÿ "# #

                                    ' '
V

# #È" %B  %C .C.B

To evaluate this double integral we shall use polar coordinates.  Then

Surface area         œ %<  " <.<. œ %<  " < .<.' '
V

# #"
)

# "

! !
È È) )' '1

  

                .œ Ð%<  "Ñ . œ Ð&  "Ñ. œ Ð& & "Ñ" # "
) $ ! "# '

#

!
# " #

!
' 1 1 1
  

$ $
# #| ) )' È
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Cylindrical and Spherical Coordinates

Cylindrical coordinates are related to Cartesian coordinates via

       B œ <-9= C œ <=38 D œ D) )

The relationship between a volume element in the two systems is
                     , that is .Z œ .B.C.D p <.<. .D .Z œ <.<. .D) )' ' ' ' ' '

   

Spherical coordinates are related to Cartesian coordinates via     whereBß Cß D p ß ß3 ) 9

                   B œ -9= =38 C œ =38 =38 D œ -9= ! Ÿ Ÿ # ! Ÿ Ÿ3 ) 9 3 ) 9 3 9 ) 1 9 1

The relationship between a volume element in the two systems is
.Z œ .B.C.D p =38 . . . .Z œ =38 . . .  , that is . It is3 9 3 ) ) 3 9 3 ) )# #' ' ' ' ' '
important to keep in mind that  is measured from the  axis and thus varies only from 9 D !
to .1
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Example. Find the volume above the cone  and inside the sphereD œ B  C# # #

B  C  D œ #+D# # # .

       

We shall use spherical coordinates.

Cone:  D œ B  C# # #

                      D œ -9= B œ -9= =38 C œ =38 =383 9 3 ) 9 3 ) 9
The equation of the cone   orÊ -9= œ -9= =38  =38 =383 9 3 ) 9 3 ) 9# # # # # # # #

-9= œ =38# #9 9

Ê >+8 œ " Ê œ „%& œ œ  œ    or .9 9 9 1‰
% % %

&1 1 9

Sphere:    or  . Center at .B  C  D  #+D œ ! B  C  ÐD  +Ñ œ + Ð!ß !ß +Ñ# # # # # # #

           or .Ê #+ -9= œ ! œ #+-9=3 3 9 3 9#
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We see that  goes from  to ,  from  to . and  from  to .9 ) 1 3 3 9! ! # ! œ #+-9=1
%

Hence

            Volume      œ =38 .Z œ =38 . . .' ' ' 3 9 3 9 ) 3 9# #
! ! !

#+-9= #
3)9

9 1' ' '1
%

   

Example.   Consider a sphere of radius  centered at the origin. We shall find its surfacea
area. Now using spherical coordinates we have

B œ + =38 ? -9= @ C œ + =38 ? =38 @ D œ + -9= ?          

Ê < œ + =38 ? -9= @ 3  + =38 ? =38 @ 4  + -9= ? 5p p p p
       

     < ‚ < œ + Ð=38 ? -9= @ 3  =38 ? =38 @ 4  =38 ? -9= ? 5 Ñp p p p p
? @

# # #

Ê ± < ‚ < ± œ + =38 ? .= œ + =38 ? .?.@p p        ? @
# #

Thus         ' ' ' ' ' '
W W !

# ##

!
.= œ + =38 ? .?.@ œ + =38 .

1 1

  9 9

         surface area of sphereœ % + œ1 #

Surface Elements
Suppose  is a closed rectangular region in the plane ,V ?ß @  + Ÿ ? Ÿ ,

- Ÿ @ Ÿ . B œ BÐ?ß @Ñ C œ CÐ?ß @Ñß D œ DÐ?ß @Ñß Bß Cß D.  Then the equations       where 
are continuous, define a set  which is part of a surface in space.  If the functionsW Bß Cß D 
Bß Cß D V W are also 1-1, i.e. distinct points of  are not mapped into the same point of , then
the points of  in space comprise a .  A simple surfaceW Bß Cß D  simple surface element
element may be thought of as any configuration which may be obtained from a rectangular
plane region by continuous deformation (bending, twisting, stretching, shrinking) without
tearing and without bringing together any points which were originally distinct.

If  is a simple surface element corresponding to a rectangular region  in theW V
?ß @  W Vplane, the points of  which correspond to the boundary of  form what is called
the boundary .  Other points of  are called interior points.W W

All surfaces may be thought of as being built up out of simple surface elements by
matching together portions of the edges of the elements.  The  of a surfaceboundary
consists of the  edges of its surface elements.  If there are  no unmatched edges,unmatched
there is no boundary.  For example, a hemisphere has a boundary consisting of its
equatorial rim.  An entire sphere, an ellipsoid, and the surface of a cube are examples of
surfaces without boundary.

A surface is smooth if the functions which parametrize it are continuously
differentiable.  If a surface is smooth and has no boundary, it is called a smooth surface
without boundary. If a surface is given by , then the surface is smoothJÐBß Cß DÑ œ !
without boundary if   for all  on the surface.fJ Á ! Bß Cß D
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Example. Consider the surface . ThenJÐBß Cß DÑ œ %B  *C  #D  ) œ !# # #

   and      .  But (0,0,0) is not onfJ œ )B3  ")C4  %D5 fJ œ ! Ê B œ C œ D œ !
p p p

this surface.    is smooth without boundary.Ê J

 Example.  Evaluate   where  and  is the part of the cone' '
 W

#0ÐBß Cß DÑ .= 0 œ B W

D œ B  C D œ " D œ ## # # between the planes  and .

We shall use spherical coordinates , , B œ =38 -9= C œ =38 =38 D œ -9=3 9 ) 3 9 ) 3 9
In spherical coordinates the equation of the cone is .  Letting ,   we9 ) 3œ ? œ @ œ Ê1

%

have for  and  on the surface of the cone thatBß Cß D

BÐ?ß @Ñ œ BÐ ß Ñ œ -9= à CÐ?ß @Ñ œ CÐ ß Ñ œ =38 à D œ) 3 3 ) ) 3 3 ) 3        È È È# # #
# # #

where   and 1    ! Ÿ Ÿ # Ÿ D Ÿ # Ê # Ÿ Ÿ # #) 1 3È È
Ê < œ B 3  C 4  D 5 œ -9= 3  =38 4  5p p pp pp p

   È È È# # #
# # #3 ) 3 ) 3

Ê < œ < œ  =38 3  -9= 4p p p p
  ?

# #
# #)

È È
3 ) 3 )

Ê < œ < œ  -9= 3  =38 4 p p p p
  @

# # #
# # #3

È È È
) )

Ê < ‚ < œ Ò-9= 3  =38 4  5 Ó ± < ‚ < ± œp p p pp p p
     and ) 3 ) 3

"
# #

#3 ) ) 3
È

' '
W

# # # $ #
# # # # #

# ! #
" =38#
# # ) #

# #
! B .= -9= . . œ  .  =      ' ' 'È È

È ÈÈ È1
) 13 ) 3 ) 3 3 ) 3Š ‹l

           œ #"&
%

È 1


