Ma 529
Lecture V

Surface Integrals (Continued)

Recall that last time we showed that if S is a surface given parametrically by
z = z(u,v), y = y(u,v), z = z(u,v)
then ffg f(z,y,2) ds = IL f(z(u,v), y(u,v), 2(w,v)) |TuxT. | dudv,
where G is the image of S' in the u, v-plane.

Remark: Very often one is interested in an integral of the form f f g D -7mds

where 7 is a unit normal (perpendicular) vector to the surface S pointing in the outward
direction. From the discussion on the top of page 2 it follows that vectors 7. and ?v are
both in the "plane" of the surface. Thus?u x_'r"v is _L to the surface S. Hence

PuxXTy .
+ 525 is a unit normal.
ﬁ-’uxru|

We choose the appropriate sign (either + or - ) which makes this unit vector outward. One
can select an appropriate point on the surface and see

if
PuXTy s s
+ S+=5* is inward or outward.
|7-'u><'rv|
AP PuxXT
If it is inward, then use — S*+"5v.
ﬁ-’uxru|
Note that

[[.3 Rds = ffs?'(;;‘:;ﬁ) (|70 X7 | ) du dv

= ffS? Py x7To) du dv

Thus, unless one is asked specifically for the unit vector 7{, it is not necessary to calculate
—
|70 %70 |

V-1
WinEXP40\Ma529\Lec5.wxp



Example:

Let R be the region bounded by the cylinder 2 4+ ¢ = 1 and the planes z = 0 and
z =z + 2. Let S be the entire boundary of R. Find the value of [ [, s? .70 ds where 7 is
the outward directed unit normal on S and

- - -
= 2z — 3yj + zk.

Now S is composed of S7, S5, and Ss.

—'
OnS, n=—-k = 90-n=—2 Butz=0o0nS; = 0-n=0 = ffST;’-T{
ds=0

OnS;s z=x+2 = weparametrizeas z=uv y=v 2z2z=u-+2

e S A e
r =xi +yj +2k =ui +vj + (u+2)k

— 2> 7 - - — > 2
r.=1 +k Ty,=17 = r, Xr,=k—1 s0|'ru><'rv|=\/§
- - 2 2 —_ — _ — —
= 71 = rux_r;,, — k—1 and U -7 = 2z+2z __ 2utu+2 __ —ut2
F!ux"'vl \/5 \/5 \/5 \/5

Alsods = |7, x 7 | dudv= /2 du dv so that

ff33?‘3d3=ffa(—u+2)dudv

Where G is the projection of S5 in the w,v — plane. But since u = z, v =y and the
plane z = x + 2 slices the cylinder 22 + 32 = 1, we see that G is the interior of the circle
2 + 32 < 1. Thus on S5 we have

I3 Rda= [ Lo, ot 2)dody



= fZWj;) rcosafrd'rd0+2ff2+ 2@z dy = —%‘l;)% cos 0dO + 27 = 27

On S> we shall use cylindrical coordinates x = rcos 0 y=rsin@ z==z
Since our cylinderis 22+’ =1 = r=1 =

r =co80i sin@j+2zk where 0< 2z <x+2=cosb +2.

Taking u = 0 v = z here, we have

- - -
_'r"g=—sin6’i+cost9j .=k

= rTegXrT,=co80i +sinfj = |rogxr,| =1

Thus n = cos @ i + sin 0 5. This is outward.

- >
n

- - -
D-m=(2cos0i —3sin@j+2k)-n =2cos’0 — 3 sin20

2 2+cosf

Hence ffs27;~7{ds= o o

(2 cos®0 — 3 sin0) d=d6

2w r2+4-cosf . 9
=j;) o (2—5sin’0)dzdf = — 2«

Thus we have finally

f 'v nds—(ffsl+ff52 +ffs3)'v-?{ds=0+27r—27r=0.

Stokes' Theorem and the Divergence Theorem

Stokes' Theorem:
Let S be a regular surface bounded by a closed curve denoted by S (boundary of S).

e -
Let F' and curl F' be continuous over S.
Then
- — - o\ — -
JJsewlF-Nds = [[(VxF)-Nds = §,.F-d?

Here the direction of integration around 9.5 is positive with respect to the side of S on

_}
which the normal NV is drawn.
Remark:
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Example: Verify Stokes' Theorem when F =yi + 3z7 + 3zk and S is the

hemispheric surface z = /1 — z2 — 92,
- -
We shall use the outward IN. We calculate fa sF - d7 first. Now &S is the
circle 22 4+ y2 = 1, z = 0. We parametrize this as
x=cost,y=sin t,z=0 0<t<2~w
- - - -
F = sinti + 035 + 3costk
- o SO 4 >
r(t) = xi + yj +2k = costi +sintj +0k

- -
?,(t) = —sinti +costy
- 2w

Thus faSF-d? = [, —sin?tdt = —m.

- —
Now consider f f g curl F - Nds.

> 23> P
P_ls 2 5 P_alT
curl F' = o o5 5 = —3¢t —35 —
y 3z 3x



S is the surface 2 + y2 + 22 = 1 z > 0. In spherical coordinates p =1 =

x = sing cos 0, y = sing sin 0, z = cos ¢ Letu=¢ wv=20
and therefore 7 (u,v) = sinu cosvi + sin u sinv j + cosu k

g g . 9 rd . 9 . - . g

Tw X T, = 8in°ucosvi + sin® u sinv j + sin u cosu k

At ¢ =7/2,0=0, ie.u=7/2 v=0 =
_ -
?u x ?v = ¢ which is outward. Hence N =?u x ?v is outward

2

- —
Now curlF'- N = — 3 sin?u cos v — 3sin?u sin v — sin u cos u

- — T
ffscurlF-Nds=f02 j(;z (83 sin® u cos v+ 3 sin? u sin v+ sin u cos u) du
dv

27 r> . . 2w r> .
= —31(; J(;Z (cos v+ sin v) szn2ududv—f(; f(;z cos u sin u du dv
= —§f27r(cosv+sz'n'v) [u—m]gdv —lf%d'u
= T 2Jdo 2 lo 2 Jo
—3(z f27r[cos'v+sin'v]dv—7r
2\2 ) Jbo
— 3T [—sinv+cosv]g —m= — mas before

The Divergence Theorem (Gauss's Theorem)

—
Remark: We shall call a surface positively oriented if the normal IV is an outer normal;
otherwise, S is negatively oriented.

_’
Theorem: Suppose S is a regular, positively oriented, closed surface, and that " and

—
div F' are continuous over S and the region V is enclosed by S.

Then [[,F = [[,F-Nds=[[[,dvFdv=[[[,V-Fdv

_’
where IV is the outward normal to S.

_'
Note: NN must be outward.

- - 25 -
Example: Check the validity of the divergence theorem if F' = xi + yj + zk, where V'
is the volume of the cube 0 < z, y, z < 4.



X

divF=1+1+1=3.Hence [[[ divFEdV =3 [[[, dV =3V =3¢

- —
Now we must calculate [ [ F'- Nds over all six faces of the cube. On z = £

- - — — — - -
weuse N =1. = F-N= (bi +yj+zk) -1 =4¢

ff?-]_\;ds= ¢ [ [ ds= £ x (areaof face ) = 3
Facex = ¢ Facex = ¢

- - - - - - —
On z=0 F=yj+zk we may take N = —i. Thus F -N =0 Thus the
contribution from this face is 0.

- -
We get similarly for y = ¢, [ [ F =3, whereasfory =0, [ [ F=o0.
Facey =1

And for the face z = £, ff%”=£3 andonz=0,fff7”=0.
Face z =1

- —
Finally we have [ [, g F'- Nds = £% 43 + £3 = 3¢%, where S is the entire surface of the
cube.

Example. Verify Gauss's Divergence theorem, namely

[[F-Rds = [[[divFdv
S |4



- - - -
where FF= (x —y+2) i +2xj + k and S is the closed parabolic bowl consisting of
the two pieces

Sy: z=2x%+ 9% 22492 <1
and

Sy: thecircle 2> +9y?> <1, z=1

S4

> —
Thus S, is the bowl proper and S; is the circular cap on top.Since V- F' = 1 =

fffv de—fffldv—f f*m f2+2dzdyda:

= [ -2 P dyda

= JT S a—ryrarae = [ (5 - 5) f) d6=7

We now evaluate ffsz”-?{ds= ff51+ ffsz

On S, we use cylindrical coordinates

rx=rcosl , y=rsinfl z==z
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= rx=rcosf , y=rsin z=z2+y>=1r>2

Let r=u,0=v = x=ucosv,y=usz’nv,z=u205 u <1 0<v<27

= 7r(u,v)= ucosvi +usinvj+u’k
Ty= cosvi + sinvj+2uk
Ty= —USINUV? +UCOSV)])
- > 2 - -
- - ¢ J ¢ J
Ty X Ty = cos v sinv 2u cos v sin v
—usinv ucosv 0 | —wusinv wucosv
2. . 2,7 2 T 2 e
= —2u°sinvjt+ucos“vk t+usin‘vk — 2u“cosvi
9 - 5 . = -
= —2u“cosvi —2u“sinvj + uk
Note that for v =60 =0, 7 =4 =1 and we have
Tw X T = — 2¢ + k which is inner.
nd b d 2 =2 2 . - - =
Therefore weuse —r, X r,=2u“cosvi +2u”“sinvj —uk =N
= . N - >
F=(ucosv—usinv+u®)i +2ucosvj+k
- —

= F-N= 2u3cos?v—2ud sinvcosv+2u?cosv +4u3 sinvcosv—u

Therefore f f SZE: - 1_\; ds =

27 1 .
j(; ‘I(‘) [2 43 cos? v+ 2 ud sin v cos v + 2 u? cosv — u] du dv
= 27T[1cosz'v+l8'&'n’ucosv+gco.s:'v—1]d’u
o L2 2 5 2

=j(')27r{i(1+cos2fu)}dv+[i Sinzv+§sinv—%v]2(;f

- — .
ffSZF-Nds= 5 W= —
On S, : this is the circle 22 4+ y? < 1, z = 1. We use the parametization
r=rcos@, y=rsinf, z=1
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N - -
Therefore_'r"(u,'u)= ucosvi +usinvy +k 0<u<l 0<v<2w

Ty = COSV + StNn v) Ty = —USINM VL +UuUCosSvV)J

rd - 7{:’ - -

- - ¢ ;7 ¢ .-7
Ty X Ty = CcoSs v stnv O Ccos v sin v
—usinv ucosv 0| —wusinv wucoswv

5 e -
=wucos“vk+usinvk = uk.

As expected this is outward since0 < u <1

- - — - - -
Therefore N =uk and FF = (ucosv—usinv+1)i +2ucosvj +k

=
=>f ?-J_\;ds=f2ﬂf1ududv=7r
S

JI+Jf=—5+m=3

Remark:There are a number of interesting consequences of the divergence theorem. Let

u = u(x,y, 2) and v = v(z, y, z) be scalar functions with continuous 2nd partials. Also
let

F=uJv=uv,t +uvyj +uv,k. Then
VF=3 -uvv)=uTY Yv+ Vu- Vv = B

u </ 204+ uyvy + UyVy + u,v,. Let 7 be a unit outward normal, i.e., 7 = % and apply
the divergence theorem to the above F' —

D [[[(Tu- Tv+uT2w)dv= [[;u[T v -n]dS. Interchange u and v
2) [[[(Tv- Tu+vT%u)dv= [[,v]Tu-n]dS. Substract —

J[f(wI2w—vT2u)dV = [[(uv—vTu)- ndS.

Also known as Green's Theorem.



Remark. Let us consider the identity (2) in 2-dimensions. Then V' becomes a region R
and S is the boundary of R,OR. We have [ [ (T u- Yv+vT3u)dA=4¢,,
v<J u-nds

where s is arc length along OR. Recall G u -7t = g—; = directional derivative of u in
direction of outward normal therefore we have

3) [[o(Tu- Tv+vTu)dA=§,v- % ds.

Letv=1 —

Y [[pVu Tv+vT2u)dA =§,v- % ds.

Now consider a classical problem in Math Physics. Find u such that <724 = 0in R and

du — f onOR. Now 4) — [[pvViudA=0=¢,, % ds=¢,, fds=0. The

Newmann Problem possesses a solution only if f is such that fa rfds=0.



