Ma 529
Lecture VI

Complex Analysis: Complex numbers and complex functions

Complex numbers: Consider a number of the form z = x + iy, where z,y are real and

i2 = — 1. We call z the real part of z and y the imaginary part. We write = = Re(z)

y=Im(z). Let z =z;+4y; and 2 = x2 + iy, then 2; =29 & xz; = x2 and
Y1 = Y2. Also

z1 £ 2o = (1 £ x2) +i(y1 £ y2)
z1 - 2z = (1 + Y1) (22 + iy2) = (T1%2 — Y1¥y2) + i(T1y2 + T2y1)

z=zxz+ity=0 << z=0andy =0. If 2; - 250 =0 = atleast one of 21, 25 is 0.

21 Titiys (-’32—2'112) — Tty 4 4 (-’Bzyl -’151?/2)

2Z2 To+1Y2 T2—1Y2 x + 2 2+ Yo

Remark. If z = x + ¢y, the number zZ = x — iy is called the complex conjugate of z.
Note that z - Z = x? 4+ ¢y which is positive unless z = 0.

Geometrical Interpretation of Complex Numbers

imaginary axis
‘?’

| =

real axis

Example: Describe the locus of points 22 + 22 = 4.

z=x+iy = 22=(r+iy)?=2x%— 9>+ 2izy

z=z—iy = z22=(x—iy)’=2x>—y®— 2izy

Hence 22 + 22 = 222 — 2y? = 4 or x? — y? = 2 which is a hyperbola.
Note that 2z = 2 + y2 = | z | 2. This may be used to imply two properties:
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1) |z1+22| < | 21| + | 22| triangle inequality.
(2) | 21 — 22 | = distance between z; and zs.

Polar Form of Complex Number
Polar coordinates = z = rcos + irsinf = r(cosl + i sind) ; where

v
o b K
2|7 7 B=X+1Yy
o
doppt s o

| z| =r = (2 +y?)2 is the distance of point (z,y) from (0,0) is called the absolute

value or  modulus of z. 60 is called the argument of z = x + iy, written
0 = argz = arg(x + iy). 0 is determined up to a multiple of 27r. To define argz as a
single-valued function of 2z, one usually either makes the restriction 0 < 8 < 27 or else
—m < @ < 7. Call this last restriction the principle branch or principle determination.
From x = rcosf, y=r sinf weget 0 = arctan ¥ .

Let 2y = r1(cos6; + i sinf;) and 2o = ro(cosbs + i sinbs). Then
2129 = r11r2[cos(01 + 02) + i sin(61 + 02)]

= | z120| =mira= | z1| | 22 | and

arg(z122) = 01 + 03 + 2nm = argz; + argzs + 2nm.

21

21

7| =079 2 —arg z + 2n7 (n any integer). From

Similarly

| 21]
= — and ar
B g

2

z =r(cosf +i sinf) we have 22 =r2[cos 20+ i sin 26] Continuing we have

2" = r"[cosnb + i sin no).

Theorem: 2" = r"(cos@ + i sinf)".

Proof: We must show cos(nf) + i sin(nf) = (cosf + ¢ sinf)™. Let

w=cosf+i sinf. Then|w| =1 = |w|%?= |w?| =1 and in general

|w|™=1. Also

arg w? = arg(w - w) = arg w + arg w+ 2km = 2 arg w + 2km.
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By induction we have
arg(w™) = n arg w + 2km.

If arg w=6 then arg(w™) =nf (to within 2k7). Therefore the polar form of
w” = (cosl + i sinf)" is cos(nB) + i sin(nd) and this = the result.

Remark. The result (cosf + i sinf)™ = cosnf + i sinn@ is known as de Moivre's
Formula. It may be used to derive trig identities.

Functions and Sets in Complex Plane

We shall be discussing functions from the complex numbers to the complex numbers, say
f(2). Given a function f(z) we may write f(z)= Re[f(z)]+ iIm[f(z)], where
z=xz+1y = f(2) = Ref(x+iy)+Imf(x+1iy). Re f(z) and I'm f(z) are real-
valued functions = f(2) =u(z,y) + iv(x,y). Here u and v are functions (real-
valued) of the two real variables = and y. We shall need certain properties of complex
numbers in our later work. These are:

Definition: Given a complex number z, = ¢ + iyo and a § > 0, then the open disk of
radius § about 2, is {(z,y) | (x — z0)?> + (¥ — yo0)? < 62}, thatis {z| |z — 2, | < &}.
An open disk of radius 6 about 2, is called a 6 neighborhoodof z. The closed disk of
radius 6 about z is {z | | 2z — 29 | < 6}.

Example.

z]< 1

Let S be any set of complex numbers and z any particular complex number. We call
members of S points.

Definition

(1) 2y is an interior point of S if there existsa d > Osuchthat {z | |z — 2, | <6} C S.
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(2) S is open if every point of S is an interior point.

(3) 2y is a boundary point of S if every §-neighborhood of 2 contains at least one point
in S (zyp may or may not be in S'). The boundary of S consists of all boundary points
of S.

(4) S is closed if every boundary point of S actually belongs to S.

Example. S = {z | Rez > 0} = {z + iy | z > 0}.
Every point of S is an interior point. = S is open. Boundary of S = {z = iy}. S is not
closed.

Example. S = {1,2,...,n} is closed because there are no boundary points of .S.

Example. | z| < lisopen. | z| < 1is notopen or closed.

Definition: Let .S be a set of complex numbers. Then

(1) S'is bounded is 3 a number M > O such that if a + bi € S, then a? + b%? < M?2.
Example: S = {1, 2, 3, ...} is not bounded.

(2) S is connected if any two points in .S can be joined by a polygonal line (a path
consisting of finitely straight line segments) consisting only of points of S.

Example.
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Connected

not connected

(3) S is a domain if S is both open and connected.

Functions, Continuity, and Differentiability

Let f(2) be a complex function and 2y a complex number.

Definition: We say f(z) has limit L as z approaches 2z, written lim f(2) = L. If

Z2—2

1) f(z) is defined in some open disk about 2, except possibly at z itself.
2) Given € >0, 3aé > Osuchthat | f(2) — L | < € whenever | z— 2| <é.

Note: Independent of direction z — 2.
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Definition: We call f(2) continuous at z, if f(z) is defined for all z in some open disk
about 2z, including 2y, and if lim f(2) = f(20)
Z2—29

Zy Lf(z)

Definition: f(2) is said to be continuous in the domain D if it is continuous at every point
of D.

Definition: A function w = f(z) defined in a domain D is said to be differentiable at a
point z of D if

lim {GtR)—f()
h—0 h
exists (is finite) and its value is independent of the way in which A—0. This limit is denoted
by f/(z) or %2 and is called the derivative of f(z) at the point 2.

Example: f(z) = | z| is continuous, f/(2) does not exist. Consider’llin}) W *).

Let z =r(cosf +isinf) = |z| =r.
a) For @ = 6y constant, let h = p(cosy + i sinby) (*)

rpl—r

= ,l)l_l)r(l) p(cosbp+i sinby)

=cosly — © sinby.
b) For r = r( a constant, take z + h = r[cos(0 + A 0) +isin(0 + A 0)]
Then |z+h | =rand

*) Algm0 % = 0 # cosly — i sinby.
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Hence the derivative does not exist at any point z.

Definition: If a complex function w = f(2) is defined and differentiable at all points of a
domain D, we say f(z) is an analytic (or regular or holomorphic) function in D.

Remark: The statement " f(z) is an analytic function" means 3 some domain of
analyticity. Every polynomial f(z) = a9y + a1z + ... + a,2" (ag,as, -.., a, are complex
constants) is regular in the finite complex plane and every rational function of the form

apt+aiz+...4a, 2"
by+b12+...+b,, 2™

(a's and b's are constants) is regular in the finite complex plane, except at the zeroes of the
denominator.

Definition: 2z, is called a singular point of f(2) if f(2) is not differentiable at z,, but if
every neighborhood of z contains points at which f(2) is differentiable.

Example: A zero of the denominator is a singular point of a rational function.

The Cauchy-Riemann Equations

Let z=x + iy and f(2) = u(z,y) + iv(z,y). We want to show that differentiability
implies a simple but characteristic property of w and v. Suppose f’(z) exists at a point
and let h = A z + i Ay and recall that the value of f’(z) is independent of the way in
which A — 0. We shall evaluate the limit of the difference quotient:

(1) LEHN=FG) _ [atdeytty)tivetSnyt Oy luay) tine

,y)] 3
Aaotily by letting

h= A x+ i/ y gotozeroin two different ways.

1) Ay=0 Axz>0, Axz—0

FEAm =) _ [ulatdep) uey)] | ; betdon) @)

Az Az
Since limit of the left hand side exists => the limit of right hand side exists and (1) implies

. u(z+Az,y)—u(z,
lim [ Ao (o)

1 exists and equals u,(z,y) and (1) also implies
r—

lim [v(x-'-AwAy;_v(x’y)] exists and equals v, (z,y) .

x—0
Therefore at z = x + iy

?2) f(z) =uz +iv,
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2) Az=0, Ay>0, Ay—0. Then(1) —

flth)—f(z) _ [wzytdy)—u(zy)] | iv(zyt+iy)—v(z.y)]
3 iy iAy )

Let Ay — 0, then g—"; and g—;’ exist at point z and

3 f(2) = vy —iuy,.
From (2) and (3) we have
Ou v Ou v
(4) %=a—yand a—y=—£.

These are the Cauchy-Riemann equations.

Theorem: A necessary condition for f(z) = u + iv to be differentiable at z is that the
four partial derivatives with respectto x and y at z = x + ¢y are related by equations

.

Example 1: f(z) = Re[z] =z. Here w =z, v =0 which implies u, =1, v, =0,
u, = 0, v, = 0. C-R equations are satisfied nowhere, so that f(z) = x is differentiable
nowhere.

Example2: f(2)=|2P=22+13? u=22+9y?> v=0

Uy =2 uy =2y v;=1vy,=0. C.R. equations hold only at z = 0. Thus z =0 is
only possible point where |z[?> may be differentiable. That this is indeed the case may be
determined by a separate computation.

Remark: While C-R equations are necessary for differentiability at a point, they are not
sufficient.

Example3: f(2)=+/|zy| =u v=0

Now f(z) =0 on both axes, so that at z=0 wu, = v, = u, = v, = 0. Thus the C-R
equations hold at z = 0. But f(z) is not differentiable at z = O since the difference
quotient is

*) f(0+h,z*f(0) = f(hh) = VI&zAly  yfwelet Az =ar, Ay=pBr, where aand 3

Az+ily °
real constants,
Vidzsyl _ r/leBl _ Ve8| o F0+R)—F(0)  _ laBl
= Patidy = ratif) — at+ig 2nd rll_lf(l) 3 = 4+ - Therefore the

difference quotient is not independent of path of approach. Hence f(2) is not
differentiable at z = 0.
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