Ma 529 Lecture VII

Theorem: Suppose the four partial derivatives of first order of u and v with respect to x and y exist and are continuous throughout a domain D. Then for f(z) = u(x,y) + iv(x,y) to be regular in D, it is necessary and sufficient that the Cauchy-Riemann equations hold throughout D.

Note: If we are concerned with regularity (or analyticity) at a point, then the existence, continuity of the first partials and Cauchy-Riemann equations must hold in a neighborhood of the point.

Proof: We have done necessity. For sufficiency see O'Neil.

<u>Harmonic Functions</u>: Let us now assume the existence and continuity in D of the second partials of u and v with respect to x, y (which, we will see later, is automatically true). Then Cauchy-Riemann equations $\Rightarrow u_x = v_y$ and $u_y = -v_x \Rightarrow$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$$
 $\frac{\partial^2 v}{\partial y \partial x} = -\frac{\partial^2 u}{\partial y^2}$ therefore

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \qquad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Thus u and v both satisfy Laplace's Equation (or the potential equation) in two dimensions of the form $\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$.

Definition: A function that has continuous second order partial derivatives in a domain D and satisfies Laplace's equation in D is called a <u>harmonic</u> function.

Remark: Thus the real and imaginary parts of a function analytic in a domain D are harmonic functions in D.

Rational Powers and Roots.

Definition:
$$z^0=1$$
 $z^n=z^{n-1}\cdot z$ $n=1,2,\ldots$ If $z\neq 0$ $z^n=\frac{1}{z^{-n}}$ for $n=-1,-2,\ldots$

Question: How do we define z^r where r is a rational number?

Answer: r rational $\Rightarrow r = \frac{m}{n}$. We must define $z^{\frac{m}{n}}$, where m and n are integers. Now $z^{\frac{m}{n}} = (z^m)^{\frac{1}{n}} \Rightarrow$ we need a definition of $z^{\frac{1}{n}}$. Let $w = z^{\frac{1}{n}} \Rightarrow z = w^n$. Now Now $z = r[\cos\theta + i\sin\theta]$ and $w = R[\cos\phi + i\sin\phi] \Rightarrow$

$$w^n = R^n[cos\phi + isin\phi]^n = R^n[cosn\phi + isinn\phi] = z = r[cos\theta + isin\theta]$$

 $\Rightarrow R^n=r$ and $n\phi=\theta+2k\pi$ (k any integer) $\rightarrow |W|=R=r^{\frac{1}{n}}$ positive nth root of the positive number r and $arg\ w=\phi=\frac{\theta+2k\pi}{n}$ $k=0,\,\pm 1,\ldots$ Thus

$$w=z^{rac{1}{n}}=r^{rac{1}{n}}\left[cos\left(rac{ heta+2k\pi}{n}
ight)+i\,sin\left(rac{ heta+2\pi k}{n}
ight)
ight].$$

Here k can be an integer. However, we only get distinct values for k=0,1,...,n-1. For k=n,n+1,... or k=-1,-2,-3,... we repeat these n values. To find $z^{\frac{m}{n}}$ we find $(z^m)^{\frac{1}{n}}$.

Example: Find all possible values of $(2-2i)^{\frac{3}{5}}$.

 $(2-2i)^3=(4-8i-4)(2-2i)=-16-16i$. Therefore we need the fifth root of -16-16i. Now $\tan\theta=\frac{y}{x}=\frac{-16}{-16}=+1$. Hence -16-16i is in the third quadrant $\Rightarrow \theta=\pi+\frac{\pi}{4}=\frac{5}{4}\pi$. Thus the fifth roots are:

$$(\sqrt{512})^{rac{1}{5}}\left[cos\left(rac{5\pi/4}{5}
ight)+i\,sin\left(rac{5\pi}{20}
ight)
ight] \qquad \qquad k=0$$

$$(\sqrt{512})^{rac{1}{5}}\left[cos\left(rac{(5\pi/4)+2\pi}{5}
ight)+i\,sin\left(rac{5\pi}{20}+rac{2\pi}{5}
ight)
ight]\;\;k=1$$

$$=(\sqrt{512})^{rac{1}{5}}cos\left(rac{13\pi}{20}
ight)+i\,sin\left(rac{13\pi}{20}
ight)$$

$$(\sqrt{512})^{rac{1}{5}}\left[cos\left(rac{5\pi}{20}+rac{4\pi}{5}
ight)+i\,sin\left(rac{21\pi}{20}
ight)
ight] \qquad k=2$$

$$(\sqrt{512})^{rac{1}{5}}\left[cos\left(rac{5\pi}{20}+rac{6\pi}{5}
ight)+i\,sin\left(rac{29\pi}{20}
ight)
ight] \qquad k=3$$

$$(\sqrt{512})^{rac{1}{5}}\left[cos\left(rac{5\pi}{20}+rac{8\pi}{5}
ight)+i\,sin\left(rac{37\pi}{20}
ight)
ight] \qquad k=4$$

Computing the above we get the $\frac{3}{5}$ powers of 2-2i.

Complex Exponential and Trigonometric Functions

We want to extend real functions to complex functions. We desire a function f(z) such that $f(x) = e^x$ when x replaces z. The fundamental properties of $f(x) = e^x$ are

f'(x) = f(x) and f(0) = 1. We shall define e^z analogously. We want an analytic function f(z) which satisfies

(1)
$$f'(z) = f(z)$$
 $f(0) = 1$.

If \exists such a function, then it will reduce to e^x for z=x. Let f(z)=u(x,y)+iv(x,y). Then $(1) \Rightarrow u_x(x,y)+iv_x(x,y)=u(x,y)+iv(x,y) \Rightarrow u_x(x,y)=u(x,y)$ $v_x(x,y)=v(x,y)$. Solutions to these equations are

$$(2) \quad \begin{array}{c} u(x,y) = p(y)e^x \\ v(x,y) = q(y)e^x \end{array} \right\}$$

 $f(0)=1 \Rightarrow u(0,0)+iv(0,0)=1 \Rightarrow u(0,0)=1, v(0,0)=0 \Rightarrow p(0)=1$ and q(0)=0. The Cauchy Riemann equations $\Rightarrow u_x=p(y)e^x=v_y=q'(y)e^x$ and $u_y=p'(y)e^x=-v_x=-q(y)e^x \Rightarrow p(y)=q'(y)$ and q(y)=-p'(y). Therefore $q(y)=-p'(y)=-q''(y) \Rightarrow p$ and q satisfy the equation.

(3)
$$\phi'' + \phi = 0$$
 ODE

Also, p(0) = q'(0) = 1 q(0) = -p'(0) = 0. The solutions of (3) are cosy and siny. The I.C. $\Rightarrow p(y) = cosy$ q(y) = siny, $f(z) = e^x(cosy + i siny)$. Therefore we define

(4)
$$e^z = e^x(\cos y + i \sin y)$$
 where $z = x + iy$

Properties of e^z

$$(1) e^z e^w = e^{z+w}$$

(2) In (4) set $x=0,\ y=\theta \Rightarrow e^{i\theta}=cos\theta+i\ sin\theta$ Thus we have a new polar representation for z

$$z = r(cos\theta + i sin\theta) = re^{i\theta} = \mid z \mid e^{i\theta}$$

(3)
$$|e^z| = e^x$$
 and $arg e^z = y$

(4)
$$e^{z+2\pi i} = e^z$$
 since $z + 2n\pi i = x + i(y+2n\pi)$ for $n = 0, \pm 1 \pm 2$

$$(5) e^{2n\pi i} = 1$$

Trigonometric Functions

$$e^z = e^x(cosy + i siny).$$

Let $x=0, y=t \Rightarrow e^{it}=cost+i \ sint$ and therefore

 $e^{-it} = cost - i \; sint. \; ext{Solving for } cost \; ext{and } sint \; \; ext{and then setting } t = z \; \Rightarrow$

(5)
$$cosz = \frac{e^{iz} + e^{-iz}}{2}$$
 $sinz = \frac{e^{iz} - e^{-iz}}{2i}$.

We use (5) to define cosz and sinz.

Properties:

- a) $\frac{d}{dx} \cos z = -\sin z$ $\frac{d}{dz} \sin z = \cos z$
- b) sin(z+w) = sinz cosw + cosz sinw
- c) cos(-z) = cosz sin(-z) = -sinz
- d) cosz = cos(x+iy) = cosx cosh y isinx sinh y sinz = sinx cosh y + icosx sinh y
- e) $|\sin z|^2 = \sin^2 x + \sinh^2 y$ $|\cos z|^2 = -\cos^2 x + \sinh^2 y$
- $f) \cos^2 z + \sin^2 z = 1$

The Logarithm

The equation $e^w = z \ (z \neq 0, \infty)$ has infinitely many solutions.

<u>Definition</u>: Each of the solutions w of $e^w = z$ $(z \neq 0, \infty)$ is called a *logarithm* of z. The function which associates with each such z, the corresponding values of w, is called the log of z and is denoted by w = log z.

Note: The above denotes a multi-valued function. We will use logz to denote any of the "determinations." Let us obtain an explicit representation of logz.

Let
$$w=u+iv$$
. Then $e^w=e^{u+iv}=e^u\cdot e^{iv}=z$ \Rightarrow $|z|=e^u\ v=argz$ \Rightarrow $u=ln\ |z|$ (natural log) and $v=argz=\theta$.

Hence $log z = ln \mid z \mid + i \ arg z \ (z \neq 0, \infty)$, where $ln \mid z \mid$ denotes the real ln and arg z is given by all admissible values. Since values of arg z differ by multiples of 2π , it follows that the <u>various determinations of log z differ by multiples of $2\pi i$ </u>

Definition: The *principal value* or *determination* of the logarithm corresponds to the principal determination of the argument. Thus

$$Lnz = ln \mid z \mid + i Argz$$
 where $-\pi < Argz \le \pi$.

It may be shown that $log(z_1 \cdot z_2) - log z_1 - log z_2 = 0 \pmod{2\pi}$. Also

$$\frac{d}{dz} \ln z = \frac{1}{z} \quad z \neq 0.$$

Example:

a) Find $log(i^{\frac{1}{4}})$

a)
$$log(i)^{\frac{1}{4}} = \frac{1}{4} \, logi = \frac{1}{4} [ln \mid i \mid + i \, argi]$$

 $= \frac{1}{4} [ln \mid i \mid + i(\frac{\pi}{2} + 2n\pi)] = i(\frac{\pi}{8} + \frac{n\pi}{2}) \, n = 0, \, \pm 1, \dots$

b) Find $Ln(1+i\sqrt{3})$

b)
$$Ln(1+i\sqrt{3})$$

 $Ln(1+i\sqrt{3}) = ln \mid 1+i\sqrt{3} \mid +i \operatorname{Arg}(1+i\sqrt{3})$
 $= ln \ 2+i \operatorname{Arg}(1+i\sqrt{3})$

Let
$$\theta=arg(1+i\sqrt{3}\,)$$

$$tan\theta=\frac{y}{x}=\frac{\sqrt{3}}{1}\ =\sqrt{3}\ \Rightarrow\ \theta=\frac{\pi}{3}+2n\pi\ \Rightarrow\ Arg(1+i\sqrt{3})=\frac{\pi}{3}\ \text{Thus}$$
 $Ln(1+i\sqrt{3})=\ln 2+i\,\frac{\pi}{3}$

The function z^{α}

If α is an arbitrary complex constant, z^{α} is defined by $z^{\alpha}=e^{\alpha \log z}$ $(z\neq 0,\infty)$. In general z^{α} is multiple-valued. If we use Lnz instead of logz in the definition of z^{α} , we get a single-valued function called the *principal value* of z^{α} , denoted by $Pr[z^{\alpha}]$.

$$Pr[z^{lpha}] = e^{lpha Lnz}.$$

Remark. $(z^{\alpha})^{\beta}=z^{\alpha\beta}=(z^{\beta})^{\alpha}$ provided proper determinations are used. (Can use some determination throughout.)

Theorem. z^{α} is an *n*-valued function (*n* a positive integer) $\leftrightarrow \alpha$ is a real rational number of the form m/n, where m and n have no common factor.

Example. Find $Pr[(-i)^i]$

$$Pr[(-i)^i] = e^{iLn(-i)} = e^{iLn(e^{rac{-\pi i}{2}})} = e^{i(-\pi i/2)} = e^{rac{\pi}{2}} \, .$$