Ma 529 Lecture IX

Complex Integration

Definition: A <u>continuous curve</u> C in the z-plane is a set of points z for which $z = \phi(t) + i\psi(t)$ (1) $a \le t \le b$ where $\phi(t)$ and $\psi(t)$ are continuous functions in $a \le t \le b$. It is <u>simple</u> if it is non-self-intersecting, i.e., if $\phi(t) = \phi(t')$ where $a < t \le t' < b$, then t = t'. It is a simple <u>closed curve</u> (a Jordan curve) if $\phi(t) = \phi(t')$ and $\psi(t) = \phi(t')$ implies t = a, t' = b.

Definition: The continuous curve (1) is said to be a <u>smooth arc</u> if $\phi(t)$ and $\psi(t)$ have continuous derivatives and $[\phi'(t)]^2 + [\psi'(t)]^2 \neq 0$ in $a \leq t \leq b$.

Note: A curve C is <u>piecewise smooth</u> if C consist of finitely many smooth pieces. This happens when [a,b] can be broken up into finitely many intervals, $[a,t_1], [t_1,t_2]...[t_{n-1},b]$.

 $z(t) = \phi(t) + i\psi(t)$ is smooth on each subinterval.

The Complex Line Integral

Let C be a continuous curve in the z-plane defined by $z = \phi(t) + i\psi(t)$ $a \le t \le b$. Let f(z) = u(x, y) + iv(x, y) can be defined on C. From the subdivision

$$\mathbf{a} = \mathbf{t}_0 \qquad \mathbf{t}_1 \mathbf{t}_2^{\mathsf{T}} \mathbf{t}_2 \qquad \mathbf{t}_n = \mathbf{b}$$

$$t_0 < t_1 < ... < t_n$$

 $riangle : a = t_0, t_1, ..., t_n = b; ext{ let } z_j = z(t_j). ext{ Consider the sum } \sum_{j=1}^n f(w_j)(z_j - z_{j-1})$

where $w_j = z(t'_j)$. $(t_{j-1} \le t'_j \le t_j)$ is on C. Let $|z_j - z_{j-1}| \to 0$ as $n \to \infty$, i.e., $||\Delta|| \to 0$.

Definition: If the limit $\rightarrow \lim_{\|\Delta\| \to 0} \sum_{j=1}^n f(w_j)(z_j - z_{j-1})$ exists, it is called the <u>line</u>

EXP40\MA529\Lec9.wxp

<u>integral</u> of f(z) along C and is denoted by $\int_C f(z) dz$.

Theorem: If C is a smooth arc and f(z) is continuous along C, then $\int_C f(z) dz$ exists.

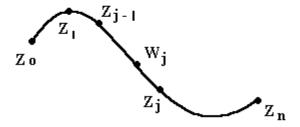
Indeed
$$\int_C f(z)dz = \int_C (u+iv)(dx+idy)$$

= $\int_a^b [u(\phi(t),\psi(t)) + iv(\phi(t),\psi(t))][\phi'(t) + i\psi'(t)]dt.$

Remark: We may restate the above as: $\int_C f(z)dz = \int_a^b f[z(t)]z'(t)dt$ $z = z(t), a \le t \le b.$

Properties of the Complex Line Integral

1)
$$\int_C [f(z) + g(z)]dz = \int_C f(z)dz + \int_C g(z)dz$$



2) If k is a constant, then
$$\int_C kf(z)dz = k \int_C f(z)dz$$

3) If C' denotes C described in the opposite direction, then $\int_{C'} f(z) dz = - \int_{C} f(z) dz$

Definition: A <u>contour</u> (or piece-smooth curve) is a continuous curve consisting of a finite number of smooth arcs.

4) If the contour C is made up of the smooth arcs $C_1, C_2, ..., C_n$; then

$$\int\limits_{C} f(z) dz \equiv \left\langle \int\limits_{C_1} + \int\limits_{C_2} + \ldots + \int\limits_{C_n}
ight
angle f(z) dz$$

IX - 2

5) If *M* is an upper bound of |f(z)| on the smooth arc *C* (where f(z) is continuous on *C*), i.e. $|f(z)| \le M \forall z$ on *C*, and *L* is the length of *C*, then $|\int_{C} f(z)dz| \le ML$.

Example 1: f(z) = K a constant. C is a continuous curve from $z = \alpha$ to $z = \beta$. Then $(z_0 = \alpha, z_n = \beta)$.

Figure

$$\sum_{j=1}^n f(w_j)(z_j - z_{j-1}) = K \quad \sum_{j=1}^n (z_j - z_{j-1}) = K(z_n - z_0) = K(\beta - \alpha)$$
 therefore
 $\int_C K dz = K(\beta - \alpha) = \int_{\alpha}^{\beta} K dz$ independent of path.

Example 2: f(z) = z; C is any piece-smooth curve from $z = \alpha$ to $z = \beta$.

 $\int_C z dz = \frac{1}{2} (\beta^2 - \alpha^2) = \int_{\alpha}^{\beta} z dz$ This is independent of path. See O'Neil for details.

Example 3: Calculate $\int_C \frac{dz}{z}$ where C is a circle of radius ζ centered at the origin.

Let
$$x = \zeta cost = \phi(t)$$
 $y = \zeta sint = \psi(t)$; $0 \le t \le 2$
 $z(t) = \zeta(cost + isint) = \zeta e^{it}$
 $z'(t) = \phi'(t) + i\psi'(t) = \zeta i e^{it} \rightarrow dz = z'(t)dt = \zeta i e^{it}dt \rightarrow$
 $\int_C \frac{dz}{z} = \int_0^{2\pi} \frac{z'(t)dt}{z(t)} = \int_0^{2\pi} \frac{\zeta i e^{it}}{\zeta e^{it}} dt = \int_0^{2\pi} i dt = 2\pi i.$

Note: If we know a function F(z) is regular and singled valued in a domain D such that F'(z) = f(z) $C: z_0 \to z_1$.

$$egin{aligned} & ext{Then} \int\limits_C f(z) dz = \int_{z_0}^{z_1} f(z) dz = \int_a^b F'(z) rac{dz}{dt} dt \ &= F[z(b)] - F[z(a)] = F(z_1) - F(z_0). \end{aligned}$$

Example: $\int_C z^n dz$; C is closed contour; $n \ge 0$, n any integer.

$$z=F'(z)$$
 where $F(z)=rac{z^{n+1}}{n+1}$

 $\int_{z_0}^{z_1} z^n dz = F(z_1) - F(z_0).$ Here $z_1 = z_0 \rightarrow \int_C z^n dz = 0$ C: closed contour.

The Cauchy Integral Theorem

Terminology: path - piecewise-smooth curve; closed path - terminal and initial points coincide; simple - does not cross itself. A domain D is simply connected if every simple closed curve in D encloses only points of D.

Example: |z| < 1 simply connected; 0 < |z| < 1 not simply connected.

<u>Cauchy Integral Theorem</u>. Let F(z) be analytic in a simply connected domain D. Then for every simple closed path C in $D \int_C f(z)dz = 0$.

Convention: If C is a simple closed continuous curve the point z is said to describe C in the *positive sense* if, as it moves along, the points of this interior domain in the immediate vicinity lie to its left.

Example: In order to understand the hypothesis of C.I.T. we give some examples:

1) We showed before $\int_C z^n dz = 0$ for any nonnegative integer *n* and any simple closed

path in the plane. By C.I.T. this is true because z^n is analytic everywhere and the entire plane is a simply connected domain. (Note: $\frac{d}{dz} \frac{z^{n+1}}{n+1} = z^n$).

2) Consider $\int_C \frac{dz}{z}$ where C is any circle of radius ζ about origin.

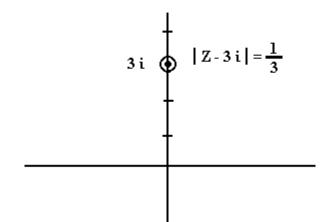
Showed: $\int_C \frac{dz}{z} = 2\pi i$. We do not get zero even though $\frac{1}{z}$ is analytic on C. Cauchy

I.T. does not hold because $\frac{1}{z}$ is not analytic at 0 which is inside the region bounded by C. There does not exist a simply connected domain D containing C in which $\frac{1}{z}$ is analytic.

3) In general, any time C goes around one or more points where f(z) is not analytic, C.I.T. fails to hold. In such a case $\int_C f(z)dz = 0$ may or may not hold. Theorem

does not hold. We have seen that $\int_C z^n dz = 0$ for n < -1 even though C.I.T. does not hold.

Example. $\oint_C \frac{(2z+1)}{z^3 - iz^2 + 6z} dz$. C is the circle of radius $\frac{1}{3}$, about 3i.



$$\frac{z+1}{z^3 - iz^2 + 6z} = \frac{A}{z} + \frac{B}{z+2i} + \frac{C}{z-3i}$$

$$\frac{z(z^2 - iz + 6)}{z(z+2i)(z-3i)} = z = 3i \rightarrow \frac{6i+1}{3i(5i)} = C = \frac{1+6i}{-15}$$

$$z = 0 \Rightarrow \frac{1}{(2i)(-3i)} = A = \frac{+1}{6}; \ z = -2i \rightarrow \frac{-4i+1}{(-2i)(-5i)} = B = \frac{-1+4i}{10}. \text{ Therefore}$$

$$\frac{2z+1}{z^3 - iz^2 + 6z} = \frac{1}{6} \quad \frac{1}{z} + \left(\frac{-1+4i}{10}\right) \frac{1}{z+2i} - \left(\frac{1+6i}{15}\right) \frac{1}{z-3i}.$$
Note: $\frac{1}{z}$ and $\frac{1}{z+2i}$ are analytical inside $C \rightarrow \oint_C \frac{dz}{z} = \oint_C \frac{1}{z+2i} dz = 0$ by C.I.T. For

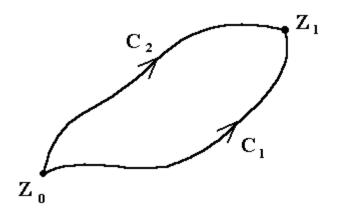
$$\oint_C \frac{1}{z-3i} dz. \text{ Now } C: z = 3i + \frac{1}{3}e^{it} \quad 0 \le t \le 2\pi \rightarrow \oint_C \frac{dz}{z-3i} = \int_0^{2\pi} \frac{1}{\frac{1}{3}e^{it}} \frac{1}{3}ie^{it}$$

$$dt = \int_{0}^{2\pi} i dt = 2\pi i \; o \; \oint\limits_{C} rac{(2z+1)dz}{z^3 - iz^2 + 6z} = \; - \left(rac{1+6i}{15}
ight) 2\pi i = rac{\pi}{15} \left(12 - 2i
ight)$$

Some consequences of the Cauchy Integral Theorem

Theorem 1: If f(z) is analytic in a simply connected domain D, then $\int_C f(z)dz$ is independent of path in D.

Proof: Let z_0 and z_1 to 2 points in D and let C_1 and C_2 be ny 2 paths from z_o to z_1 . Let $-C_2$ denote C_2 in other direction and $C = C_1 - C_2$. Then C is a closed path in D.



By the Cauchy Integral Theorem:

$$\oint_C f(z)dz = 0 \Rightarrow \int_{C_1} f(z)dz + \int_{-C_2} f(z)dz = 0 \Rightarrow$$

$$\int_{C_1} f(z)dz = -\int_{-C_2} f(z)dz = -\int_{C_2} f(z)dz$$

More consequences will be given in Lecture 10.