Ma 530

BOUNDARY VALUE PROBLEMS

Homogeneous Boundary Value Problems

Consider the following problem:

$$
\left.\begin{array}{c}
\text { D.E. } L[y]=a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 \quad a \leq x \leq b \\
\text { B.C. } \alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0 \tag{1}\\
\text { B.C. } \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0
\end{array}\right\}
$$

Here $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2} are constants.

Example

$$
y^{\prime \prime}=0 \quad y^{\prime}(0)=y^{\prime}(1)=0
$$

$\left(\right.$ Here $\left.\alpha_{1}=\alpha_{2}=0\right)$

$$
\begin{aligned}
& \Rightarrow y=A x+b \\
& \Rightarrow y(x)=b \\
& \Rightarrow b \text { any constant. }
\end{aligned}
$$

The Boundary Value Problem (1) is called linear and homogeneous since if $u_{1}(x)$ and $u_{2}(x)$ satisfy it, $\Rightarrow c_{1} u_{1}(x)+c_{2} u_{2}(x)$ also does.

Remark. The homogeneous Boundary Value Problem (B.V.P.) always possesses the solution $y(x)=0$.
Question. When does there exit a nonzero solution to (1)?
Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of $L[y]=0 . \quad \Rightarrow y(x)=c_{1} y_{1}+c_{2} y_{2}$ is the general solution of the DE.
B.C. $\left.\Rightarrow \begin{array}{l}\alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0 \\ \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0\end{array}\right\} \quad$ and $y(x)=c_{1} y_{1}+c_{2}+y_{2} \Rightarrow$

$$
\begin{aligned}
& c_{1}\left[\alpha_{1} y_{1}(a)+\beta_{1} y_{1}^{\prime}(a)\right]+c_{2}\left[\alpha_{1} y_{2}(a)+\beta_{1} y_{2}^{\prime}(a)\right]=0 \\
& c_{1}\left[\alpha_{2} y_{1}(b)+\beta_{2} y_{1}^{\prime}(b)\right]+c_{2}\left[\alpha_{2} y_{2}(b)+\beta_{2} y_{2}^{\prime}(b)\right]=0 .
\end{aligned}
$$

The above are two equations for c_{1} and c_{2}. We want a nontrivial solution. Let
$B_{a}(u)=\alpha_{1} u(a)+\beta_{1} u^{\prime}(a)$ and $B_{b}(u)=\alpha_{2} u(b)+\beta_{2} u^{\prime}(b)$. Then the determinant of the coefficients of the above system must equal zero. Thus we require

$$
\left|\begin{array}{ll}
B_{a}\left(y_{1}\right) & B_{a}\left(y_{2}\right) \tag{2}\\
B_{b}\left(y_{1}\right) & B_{b}\left(y_{2}\right)
\end{array}\right|=0
$$

Theorem 1. The homogeneous linear B.V.P. (1) has a nontrivial solution if and if (2) holds.
Theorem 2. If $u(x)$ is a particular nontrivial solution of the B.V.P. (1), then all solutions are given by $y=c u(x)$ where c is an arbitrary constant.

Proof. Let $v(x)$ be any solution, $u(x)$ a particular solution of the B.V.P. (1) $\Rightarrow \alpha_{1} u(a)+\beta_{1} u^{\prime}(a)=0$ and
$\alpha_{1} v(a)+\beta_{1} v^{\prime}(a)=0$ since u and v both satisfy the first B.C. These equations may be regarded as equations for α_{1}, β_{1}. However, since by assumption α_{1} and β_{1} are not both zero \Rightarrow

$$
\left|\begin{array}{ll}
u(a) & u^{\prime}(a) \\
v(a) & v^{\prime}(a)
\end{array}\right|=0=W[u, v]_{x=a} \Rightarrow W[u(x), v(x)]=0 \text { for } a \leq x \leq b
$$

$\Rightarrow u$ and v are two LD solutions of the D.E. \Rightarrow there exist constants $c_{1}, c_{2} \neq 0$ such that $c_{1} u(x)+c_{2} v(x)=0$ for $a \leq x \leq b \Rightarrow v(x)=-\frac{c_{1}}{c_{2}} u(x)=c u(x)$.

Example

$$
y^{\prime \prime}-\lambda^{2} y=0 \quad \lambda \neq 0 \quad y(0)=y(1)=0
$$

The general solution is $y=c_{1} e^{\lambda x}+c_{2} e^{-\lambda x}$. The B.C. $y(0)=0 . \Rightarrow c_{1}+c_{2}=0$, whereas the condition $y(1)=0$ leads to $c_{1} e^{\lambda}+c_{2} e^{-\lambda}=0$. The two equations for c_{1} and c_{2} are

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
c_{1} e^{\lambda}+c_{2} e^{-\lambda} & =0
\end{aligned}
$$

The determinant of the coefficients is $\left|\begin{array}{ccc}1 & 1 & 1 \\ e^{\lambda} & e^{-\lambda}\end{array}\right| \neq 0 . \Rightarrow c_{1}=c_{2}=0 \Rightarrow$ the only solution is $y \equiv 0$.

Example

$$
y^{\prime \prime}+\lambda y=0 \quad \lambda>0 \quad y(\pi)=y(2 \pi)=0
$$

The general solution of the D.E. is $y=c_{1} \sin \sqrt{\lambda} x+c_{2} \cos \sqrt{\lambda} x$
B.Cs. \Rightarrow

$$
\begin{aligned}
& 0=c_{1} \sin \sqrt{\lambda} \pi+c_{2} \cos \sqrt{\lambda} \pi \\
& 0=c_{1} \sin 2 \sqrt{\lambda} \pi+c_{2} \cos 2 \sqrt{\lambda} \pi
\end{aligned}
$$

The determinant of the system $=\left|\begin{array}{ll}\sin \sqrt{\lambda} \pi & \cos \sqrt{\lambda} \pi \\ \sin 2 \sqrt{\lambda} \pi & \cos 2 \sqrt{\lambda} \pi\end{array}\right|=\sin \sqrt{\lambda} \pi \cos 2 \sqrt{\lambda} \pi-\cos \sqrt{\lambda} \pi \sin \sqrt{\lambda} \pi$

$$
=+\sin (\sqrt{\lambda} \pi-2 \sqrt{\lambda} \pi)=-\sin \sqrt{\lambda} \pi=0
$$

This holds $\Leftrightarrow \sqrt{\lambda}=n$, where $n=1,2 \ldots \quad \Rightarrow \lambda=n^{2}=1,4 \ldots$
Therefore we get a non-zero solution only for these values of λ.
Consider the system of equations for $\lambda=1$

$$
\begin{aligned}
\Rightarrow & 0=c_{1} \cdot 0+c_{2} \cdot-1 \\
& 0=c_{1} \cdot 0+c_{2} \cdot 1 \Rightarrow c_{2}=0, c_{1} \text { arbitrary }
\end{aligned}
$$

Thus $y=c_{1} \sin x$ is the solution for $\lambda=1$, where c_{1} any constant. This is an example of our next topic.

Eigenvalue Problems

The following special kind of B.V.P. is called an eigenvalue problem.

$$
\left.\begin{array}{ll}
L[y]+\lambda y=0 & a \leq x \leq b \\
\text { B.C. } \alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0 \\
\text { B.C. } \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0 & \alpha_{1}^{2}+\beta_{1}^{2} \neq 0 \\
\alpha_{2}^{2}+\beta_{2}^{2} \neq 0
\end{array}\right\}(*)
$$

Here $L[y]=a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y$, and λ is a parameter.

Again $y \equiv 0$ is a solution for all λ. However, we are interested in nontrivial (nonzero) solutions.

Definition. If a nontrivial solution of the B.V.P. (*) exists for a value $\lambda=\lambda_{i}$, then λ_{i} is called an eigenvalue of L (relevant to the B.Cs.). The corresponding nontrivial solution $y_{i}(x)$ is called an eigenfunction.

Remark. $y^{\prime \prime}+\lambda y=0 \quad y(\pi)=y(2 \pi)=0$. Here $L[y]=y^{\prime \prime}$
This example was discussed above for the case $\lambda>0$ The eigenvalues are $\lambda=1,4, \ldots$ and the eigenfunctions are $\sin x, \sin 2 x, \ldots$
Note $\lambda=0$ is not an eigenvalue since $\lambda=0 \Rightarrow y^{\prime \prime}=0 \Rightarrow y=A x+B$
$y(\pi)=0 \Rightarrow \pi A+B=0 \quad y(2 \pi)=0 \Rightarrow 2 \pi A+B=0 \Rightarrow A=B=0$. Also, the case $\lambda<0$ leads to $y=0$.
Note that $c_{1} \sin \lambda x$, where λ is one of the eigenvalues, is also an eigenfunction (for all) $c_{1} \neq 0$.
Remark. $\lambda=1 \Rightarrow \sin x \quad \lambda=4 \Rightarrow \sin 2 x$
In addition,

$$
\int_{\pi}^{2 \pi} \sin x \sin 2 x d x=2 \int_{\pi}^{2 \pi} \sin ^{2} x \cos x d x=\left.\frac{2}{3} \sin ^{3} x\right|_{\pi} ^{2 \pi}=0
$$

This is a special case of the following general result.

Theorem. Let λ_{n} and λ_{m} be distinct eigenvalues and y_{n} and y_{m} corresponding eigenfunctions for

$$
y^{\prime \prime}+\lambda y=0 \quad y(0)=y(L)=0
$$

Then

$$
\int_{0}^{L} y_{n}(x) y_{m}(x) d x=0 \quad n \neq m
$$

Proof.

$$
\begin{array}{rll}
y_{n}^{\prime \prime}+\lambda_{n} y_{n}=0 & & \times y_{m} \\
y_{m}^{\prime \prime}+\lambda_{m} y_{m}=0 & & \times y_{n}
\end{array}
$$

Subtracting and then integrating the result we get

$$
\Rightarrow
$$

$$
\int_{0}^{L}\left(\lambda_{n}-\lambda_{m}\right) y_{n} y_{m} d x+\int_{0}^{L}\left(y_{n}^{\prime \prime} y_{m}-y_{m}^{\prime \prime} y_{n}\right) d x=0
$$

\Rightarrow

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{L} y_{n}(x) y_{m}(x) d x=\int_{0}^{L}\left(y_{m}^{\prime \prime} y_{n}-y_{n}^{\prime \prime} y_{m}\right) d x
$$

We now integrate the first integral on the right by parts twice and use the boundary conditions.

$$
\begin{aligned}
\int_{0}^{L}\left(y_{m}^{\prime \prime} y_{n}\right) d x & =\left.y_{n}(x) y_{m}^{\prime}(x)\right|_{0} ^{L}-\int_{0}^{L} y_{m}^{\prime} y_{n}^{\prime} d x=-\left.y_{n}^{\prime}(x) y_{m}(x)\right|_{0} ^{L}+\int_{0}^{L} y_{n}^{\prime \prime} y_{m} d x \\
& =\int_{0}^{L} y_{n}^{\prime \prime} y_{m} d x
\end{aligned}
$$

since $y(0)=y(L)=0$.
Therefore

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{0}^{L} y_{m}(x) y_{n}(x) d x=0
$$

Example Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(1)=0
$$

We must consider three cases; $\lambda<0, \lambda=0$, and $\lambda>0$.
I. $\lambda<0$. Let $\lambda=-\alpha^{2}$ where $\alpha \neq 0$. Then the differential equation becomes

$$
y^{\prime \prime}-\alpha^{2} y=0
$$

and has the general solution

$$
y=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}
$$

The boundary conditions \Rightarrow
$y^{\prime}(0)=c_{1} \alpha-c_{2} \alpha=0$ or $c_{1}=c_{2}$, and $y(1)=c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 . \Rightarrow c_{1}=c_{2}=0$.
Thus for $\lambda<0$, the only solution is $y=0$.
II. $\lambda=0$. The solution is $y=c_{1} x+c_{2}$. The BCs imply $c_{1}=c_{2}=0$. Again the only solution is $y=0$.
III. $\lambda>0$. Let $\lambda=\beta^{2}$ where $\beta \neq 0$. The DE becomes

$$
y^{\prime \prime}+\beta^{2} y=0
$$

and has the general solution

$$
y=c_{1} \sin \beta x+c_{2} \cos \beta x
$$

The BCs imply

$$
y^{\prime}(0)=c_{1} \beta \cos 0-c_{2} \beta \sin 0=c_{1} \beta=0
$$

Hence $\quad c_{1}=0$, since $\beta \neq 0$. Thus

$$
y=c_{2} \cos \beta x .
$$

Now $y(1)=c_{2} \cos \beta=0$. Since we want a nontrivial solution we cannot have $c_{2}=0$.
Hence

$$
\cos \beta=0 \Rightarrow \beta=\frac{2 n+1}{2} \pi, n=0, \pm 1, \pm 2, \ldots
$$

We therefore have the eigenvalues

$$
\lambda_{n}=\left(\frac{2 n+1}{2}\right)^{2} \pi^{2}
$$

and eigenfunctions

$$
y_{n}(x)=C_{n} \cos \left(\frac{2 n+1}{2}\right) x,
$$

for $n=0,1,2, \ldots$ Note the negative values of n do not give additional eigenfunctions since $\cos (-t)=\cos t$.

