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Calculus of Variations 11

Calculus of Variations with Constraints
We begin with some examples.

Example 1

What curve through the points (x;,y1) and (x2.)2) of given length L has the maximum area between
the curve and the x —axis?

If y(x) is a single-valued function of x, then

Y] = [ yods

L= j [1+0") dx
Therefore the problem is to maximize (1) subject to the constraint (2) and the conditions
Yx1) = yi,y(x2) = ye.

whereas

Example 2

If in the previous example we do not assume that y(x) is a single-valued function of x, then it is
convenient to suppose that x and y are given parametrically, i.e.,

x=x(), y=y(t) t1i<tst
where x(¢1) = x1,x(t2) = x2,y(t1) = y1, and y(t2) = y,. Then we have the constraint

(%) (L) -1

dA = %(xdy — ydx)

Also

since by Green’s Theorem

§ Pdx +0dy = [[(0. - P,)da
C R

so that
§%(xdy—ydx) = % J.J.[l - (-1)]d4 = ” d4 = area of R
R

c R
Thus

(1)

)
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AxO.0) = & [ 5 -yt Ja

The problem is to minimize (4) subject to the constraint (3) and the conditions x(¢,) = x1,x(f2) = x2,
y(t1) = y1, and y(12) = y2.

The above two examples illustrate problems in which one desires to minimize (or maximize) a given
integral subject to a constraint. Several examples of such problems are

SrZ F(x,y,y")dx = 0 subject to rz G(x,y,y")dx = constant
5Ixz F(t,x,y,x',)'/)dx = 0 subject to rz G(t,x,y,x',)})dx = constant

5r2 F(x,u,v,u',v')dx = 0 subject to ¢p(u,v) =0

where u = u(x),v = v(x).

We deal with (5) first. Thus our problem is to make
Iy(x)] = J.xz F(x,y,y")dx = minimum or maximum

1

where y is prescribed as y(x;) = y; and y(x2) = y, subject to the condition
Ty = [ Gleyy)dr = k

where £ is a given constant.

This problem cannot be attacked by the earlier method of forming y + en where 1 vanishes on the
boundary only, for in general such functions do not satisfy the subsidiary condition in a neighborhood
of e=0 except at € = 0. Since we have two requirements, we therefore consider the function

y(x) +eimi(x) + €ana(x)
where 717, and 77, have continuous derivatives and

mx1) = ni(x2) = n2(x1) = n2(x2) = 0.
Then we have

D(e1,62) = I[y(x) + e1mi(x) + €2m2(x)] = I: F(x,y + e1m1 + €am2,y" + €1 + €25 )dx
subject to
P(er,€2) =Jyx) +eni(x) + e2na(x)] —k = I: Glx,y+eim + e,y +em) +eny)dx—k =0
Thus we desire that the function ®(e,,€,) take on a relative minimum or maximum at all €, = €, = 0

with respect to all sufficiently small values of €; and €, for which W(e;,¢€;) = 0.

This problem is of the form we treated earlier by means of Lagrange multipliers. In particular, if A is
the Lagrange multiplier, then we require
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=0 (1)
8(@6221‘1’) . _ 0 @)
and
Y(ei,e2) =0
Now (1) =
I:[F_vnl + Fyndx + A I:[Gym + Gynildx = 0
and (2) >
I:[Fynz + Fymhldr+ 2 | :[Gynz + Gynbldx = 0
Let

[ Y 7 dx Y
Then as before an integration by parts yields

j:{[F]y +2[G), }mdx = 0 3)

and

_[:{[F]y + A[G], } nadx = 0 (4)

If[G], # 0, then we can, say, choose 1 such that fxz[G] ,M2dx # 0, and thus 4 may be chosen so that

(4) holds. However, since n; is arbitrary, 4 will not be such that (3) holds. Therefore it follows from
(3) that

[F], + 2[G], = 0

or

O(F + 2G) _4( O(F + AG) ) o
Oy dx o' -

is the necessary condition. The general solution of this equation will involve two constants of
integration and the constant parameter A . Thus we have 3 constants to satisfy the 3 conditions

Y0 = yy@a) = 2, and [ Gy, )dx = k.

The above results may be summarized as follows:

Theorem. In order to minimize (or maximize) J.: Fdx subject to a constraint I : Gdx = k we first
write H = F'+ AG, where A is a constant, and minimize (or maximize) I i? Hdx subject to no

constraints. Carry the Lagrange multiplier A through the calculations, and determine it, together with
the constants of integration arising in the Euler equation, so that the constraint J‘ " Gdx = k holds, and
X1

the end conditions are satisfied.
Example Maximize

Y] = [ yx)ds (1)



subject to

L=[" 1+ 0" ax
and y(x1) = y1,y(x2) = y2.

Solution: Without loss of generality we may move the axis and change the scale so that the curve is to
pass through (0,0) and (1 ,0). Thus we must maximize

1
J yex
subject to y(0) = y(1) = 0 and the constraint

1
[ J1+0) dc =L whereL > 1
0

We form
H=y+(1 +(y’)2)%

The Euler equation

—Hy+%Hyf =0

d.
implies
/
DN B -
X (1 + (y/)Z) 2
Then integrating we have
/ly—i =Xx-c
(1+0")°
or
{P-@x-e)’}0) = x-c1)’
Therefore
Y= (x—-c1)
- (x—c))?
SO
y = i(lz - (x—cl)z)% +
or finally

—c)2+ (x—c1)” = A2

The required curves are arcs of circles. We have three constants to determine. They are determined so
that the arc passes through (0,0), (0, 1) and has length L.

Remark: When L = Z-, we have a semicircle since the circumference of the circle is 2zA. For L > 7/2
y is no longer a single-valued function of x. For such a case it is convenient to employ a parametric
representation expressing x and y as functions of ¢, i.e., x = x(¢) and y = y(¢). We are led to the
problem

)



Maximize
1= L[y &)
where x(¢,) = 0,x(z2) = 1,y(¢1) = y(¢2) = 0 and
15} N 2 N2 % B
J = I[l[<x> + (y) ] dt=1L

Remark: It is easily seen that the problem
5rz F(t,x,y,yé,);)dx = 0 subject to rz G(t,x,y,yé,)})dx = constant

leads to the Euler equations

d gy _ —
dtHx H., =0
d

LH,~H, =0

where H = F + AG.
For our problem

H=L(xiyi)ea(@ o)

These again leads to arcs of circles.

Remark: For the problem

6r2 F(x,u,v,u',v")dx = 0 subject to ¢(u,v) = 0

the Euler equations are

L(a )_6_F_ _
dx \ ou' Ou A9 =0
L(ﬁ_)_ﬁ_F_ _
dx \ oV ov A9 =0



