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Calculus of Variations II

Calculus of Variations with Constraints
We begin with some examples.

Example 1
What curve through the points x1,y1 and x2.y2 of given length L has the maximum area between
the curve and the x axis?

If yx is a single-valued function of x, then

Ayx  
x1

x2

yxdx     1

whereas

L  
x1

x2

1  y 2 dx     2

Therefore the problem is to maximize 1 subject to the constraint 2 and the conditions
yx1  y1,yx2  y2.

Example 2
If in the previous example we do not assume that yx is a single-valued function of x, then it is
convenient to suppose that x and y are given parametrically, i.e.,

x  xt, y  yt t1  t  t2
where xt1  x1,xt2  x2,yt1  y1, and yt2  y2. Then we have the constraint


t1

t2 dx
dt

2
 dy

dt
2
dt  L     3

Also
dA  1

2 xdy  ydx

since by Green’s Theorem


C

Pdx  Qdy  
R

Qx  PydA

so that


C

1
2 xdy  ydx 

1
2 

R

1  1dA  
R

dA  area of R

Thus
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Axt,yt  1
2 t1

t2
x dydt  y

dx
dt dt     4

The problem is to minimize 4 subject to the constraint 3 and the conditions xt1  x1,xt2  x2,
yt1  y1, and yt2  y2.

The above two examples illustrate problems in which one desires to minimize (or maximize) a given
integral subject to a constraint. Several examples of such problems are

 
x1

x2

Fx,y,y dx  0 subject to 
x1

x2

Gx,y,y dx  constant     5

 
x1

x2

F t,x,y,

x,


y dx  0 subject to 

x1

x2

G t,x,y,

x,


y dx  constant     6

 
x1

x2

Fx,u,v,u ,v dx  0 subject to u,v  0     7

where u  ux,v  vx.

We deal with 5 first. Thus our problem is to make

Iyx  
x1

x2

Fx,y,y dx  minimum or maximum

where y is prescribed as yx1  y1 and yx2  y2 subject to the condition

Jyx  
x1

x2

Gx,y,y dx  k

where k is a given constant.
This problem cannot be attacked by the earlier method of forming y   where  vanishes on the
boundary only, for in general such functions do not satisfy the subsidiary condition in a neighborhood
of   0 except at   0. Since we have two requirements, we therefore consider the function

yx  11x  22x
where 1 and 2 have continuous derivatives and

1x1  1x2  2x1  2x2  0.
Then we have

1,2  Iyx  11x  22x  
x1

x2

Fx,y  11  22,y   11
  22

 dx

subject to

1,2  Jyx  11x  22x  k  
x1

x2

Gx,y  11  22,y   11
  22

 dx  k  0

Thus we desire that the function 1,2 take on a relative minimum or maximum at all 1  2  0
with respect to all sufficiently small values of 1 and 2 for which 1,2  0.

This problem is of the form we treated earlier by means of Lagrange multipliers. In particular, if  is
the Lagrange multiplier, then we require
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  
1 120

 0     1

  
2 120

 0     2

and
1,2  0

Now 1 


x1

x2

Fy1  Fy 1
 dx   

x1

x2

Gy1  Gy 1
 dx  0

and 2 


x1

x2

Fy2  Fy 2
 dx   

x1

x2

Gy2  Gy 2
 dx  0

Let
Hy  Hy 

d
dx Hy 

Then as before an integration by parts yields


x1

x2

Fy  Gy 1dx  0     3

and


x1

x2

Fy  Gy 2dx  0     4

If Gy  0, then we can, say, choose 2 such that 
x1

x2
Gy2dx  0, and thus  may be chosen so that

4 holds. However, since 1 is arbitrary,  will not be such that 3 holds. Therefore it follows from
3 that

Fy  Gy  0

or
F  G
y  d

dx
F  G
y 

 0

is the necessary condition. The general solution of this equation will involve two constants of
integration and the constant parameter  . Thus we have 3 constants to satisfy the 3 conditions
yx1  y1,yx2  y2, and 

x1

x2 Gx,y,y dx  k.

The above results may be summarized as follows:
Theorem. In order to minimize (or maximize) 

x1

x2 Fdx subject to a constraint 
x1

x2 Gdx  k we first
write H  F  G, where  is a constant, and minimize (or maximize) 

x1

x2 Hdx subject to no
constraints. Carry the Lagrange multiplier  through the calculations, and determine it, together with
the constants of integration arising in the Euler equation, so that the constraint 

x1

x2 Gdx  k holds, and
the end conditions are satisfied.
Example Maximize

Ayx  
x1

x2

yxdx     1
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subject to

L  
x1

x2

1  y 2 dx     2

and yx1  y1,yx2  y2.
Solution: Without loss of generality we may move the axis and change the scale so that the curve is to
pass through 0,0 and 1 ,0. Thus we must maximize


0

1
yxdx

subject to y0  y1  0 and the constraint


0

1
1  y 2 dx  L where L  1

We form

H  y   1  y 2 1
2

The Euler equation

 Hy  d
dx Hy   0

implies

 1   ddx
y 

1  y 2 1
2

 0

Then integrating we have

 y 

1  y 2 1
2
 x  c1

or
2  x  c12 y 2  x  c12

Therefore

y    x  c1

2  x  c12

so

y   2  x  c12 1
2  c2

or finally
y  c22  x  c12  2

The required curves are arcs of circles. We have three constants to determine. They are determined so
that the arc passes through 0,0, 0,1 and has length L.

Remark: When L  
2 , we have a semicircle since the circumference of the circle is 2. For L  /2

y is no longer a single-valued function of x. For such a case it is convenient to employ a parametric
representation expressing x and y as functions of t, i.e., x  xt and y  yt. We are led to the
problem
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Maximize

I  1
2 t1

t2
x


y y


x dt

where xt1  0,xt2  1,yt1  yt2  0 and

J  
t1

t2 
x 2



y 2 1

2 dt  L

Remark: It is easily seen that the problem

 
x1

x2

F t,x,y,

x,


y dx  0 subject to 

x1

x2

G t,x,y,

x,


y dx  constant

leads to the Euler equations
d
dt H


x  Hx  0

d
dt H


y  Hy  0

where H  F  G.
For our problem

H  1
2 x


y y


x  


x2



y2 1

2

These again leads to arcs of circles.

Remark: For the problem

 
x1

x2

Fx,u,v,u ,v dx  0 subject to u,v  0

the Euler equations are
d
dx

F
u 

 Fu    0

d
dx

F
v 

 Fv    0
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