
Ma 530

Calculus of Variations I

We begin by recalling some results from maxima-minima problems in calculus.

The Method of Lagrange Multipliers
Suppose we want to find the stationary values of a function fx,y, that is, the points at which a function
fx,y might have either a maximum or minimum, in the case when the two variables x and y are not
mutually independent, but are connected by a constraint of the form gx,y  0.

Example Suppose one wants to find the rectangle with given area 16 that has the smallest
perimeter. Then if x and y are the dimensions of the rectangle, we want to maximize fx,y  2x  y
subject to the fact that xy  16. That is we want to maximize f  2x  y subject to the condition
gx,y  xy  16  0.

Suppose that the gx,y  0 curve and the level curves fx,y  k curves in the x,y plane look as
below.

As we describe the curve g  0 we encounter curves f  k, and in general k changes monotonically,
i.e., either increases or decreases. At the point where the sense in which we run through the k scale is
reversed we may expect an extremum value. From the figure this will occur at a point x0,y0 where
the f  k curve and the g  0 curve have tangents that are parallel. Since the normal is orthogonal to
the tangent vector, this means that the normals to these curves will have the same direction. Thus at
x0,y0

fx,y  gx,y

where  is a constant of proportionality. Thus we have the two conditions
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fx  gx  0
fy  gy  0

at the extremum point x0,y0. We also have the third condition gx,y  0. These three conditions
allow us to solve for the three unknowns x0,y0, and . The constant  is called a Lagrange multiplier.

We may state Lagrange’s Rule:
To find the extreme values of the function fx,y subject to the subsidiary condition gx,y  0,
(a) Find all values of x,y, such that

fx,y  gx,y
and

gx,y  0
(b) Evaluate f at all the points x,y that result from step (a). The largest of these values is the maximum
value of f; the smallest is the minimum value of f.

Example (Same as above.) Suppose one wants to find the rectangle with given area 16 that has the
largest perimeter.
If x and y are the dimensions of the rectangle, we want to maximize fx,y  2x  y subject to the fact
that xy  16. That is we want to maximize f  2x  y subject to the condition gx,y  xy  16  0.
The condition f  g leads to

2,2  y,x

Thus we have that x  y. Then g  0 implies that x  y  4, which is a square.

The method of Lagrange Multipliers may be applied to functions of three or more variables.
Example Find the points on

4x  5y  3z  2
which are closest to 1,2,3

Solution:
The distance is given by:

x  12  y  22  z  32

It is easier to work with the square of the distance. Thus we want to minimize
fx,y, z  x  12  y  22  z  32

subject to the constraint
gx,y, z  4x  5y  3z  2  0

Let
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f  2x  1, 2y  2, 2z  3
 g
 4,5, 3

Then

x  1
2  

2y  2
5  

2z  3
3  

Thus

x  1
2 

2z  3
3

Solution is: x  3  4
3 z

and
2y  2
5 

2z  3
3

, Solution is: y  3  5
3 z

But the point x,y, z lies on the plane and must satisfy gx,y, z  4x  5y  3z  2  0, so

4 3  4
3 z  5 3  5

3 z  3z  2

Solution is: z  87
50 Thus

x  3  4
3

87
50   17

25

y  3  5
3

87
50  1

10
Example Find the extreme values of fx,y  xy on the circle x2  y2  1. Let
gx.y  x2  y2  1. We have the equation

y,x  2x, 2y

which leads to the three equations

y  2x  0
x  2y  0
x2  y2  1

, Solution is:   1
2 ,y  1,x  1 ,    1

2 ,y  1,x  1 where 1 is a root of 2Z 2  1,

Thus x0  y0   2
2 . We have the following results
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x0 y0 fx0,y0

2
2

2
2

1
2 maximum

2
2  2

2  1
2 minimum

 2
2

2
2  1

2 minimum

 2
2  2

2
1
2 maximum

Example Suppose one wants to cut a beam with maximal rectangular cross section from a
circular log of radius 2 .
Solution:
We shall use Lagrange multipliers to show that the optimal beam has square cross section. Let the
origin be at the center of the log and the beam so that the x axis cuts the log and beam in half
horizontally and the y axis cuts the log and beam in half vertically. (This means that the beam has
dimensions 2x by 2y.  The log satisfies the equation

x2  y2  2

If x,y is the corner of the beam in first quadrant, then we must maximize the area
A  fx,y  4xy

of the beam’s rectangular cross section subject to the constraint
gx,y  x2  y2  2  0

Then
f  4y, 4x  g  2x, 2y

so that

  2y
x  2x

y
or

x2  y2

But the fact that the corner of the beam must lie on the log, that is the circle x2  y2  2, tells us that
x2  x2  2

so x  y  1. (Recall that x,y is in the first quadrant.) Thus the beam is square with dimensions
2x  2y  2.

The Method of Lagrange Multipliers with Two Constraints

For optimization problems involving two constraint functions g and h, one must introduce a second
Lagrange multiplier, , and solve the equation
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f  g  h
as illustrated in the next example.
Example Optimization with two constraints

Let
Tx,y, z  20  2x  2y  z2

represent the temperature at each point on the sphere
x2  y2  z2  11

Find the extreme temperatures on the curve formed by the intersection of the plane
x  y  z  3

and the sphere.

Solution: Here we have two constraints
gx,y, z  x2  y2  z2  11

and
hx,y, z  x  y  z  3

We therefore need two constants  and .
T  2,2,2z
g  2x, 2y, 2z
h  ,,

Thus
2,2,2z  2x, 2y, 2z  ,,

We then have the system of five equations in five unknowns
2  2x  
2  2y  

2z  2z  
x2  y2  z2  11

x  y  z  3

Subtracting the second equation from the first yields the system
x  y  0

2z1      0
x2  y2  z2  11

x  y  z  3

5



The first equation tells that   0 or x  y. Consider each case separately.

If   0, then since 2  2x   we have that   2. Using this in the second equation we see that
z  1. the last two equations become

x2  y2  10 and x  y  2

Substitution yields

x2  2  x2  10

or
x2  2x  3  0

which has the solutions x  3,x  1. The corresponding y values are y  1,y  3, respectively.
Thus if   0 the critical points are 3,1,1 and 1,3,1.

If   0, then x  y and the last two equations become
2x2  z2  11

2x  z  3

By substitution
2x2  3  2x2  3

or
3x2  6x  1  0

, Solution is: x  1  2
3 3 , x  1  2

3 3 . The corresponding values of z are
z  3  4 3 /3 , so we have two more critical points.

To find the optimal solutions, one must compute the temperatures at the four critical points.
T3,1,1  T1,3,1  25

T 3  2 3
3 , 3  2 3

3 , 3  4 3
3  30.333

T 3  2 3
3 , 3  2 3

3 , 3  4 3
3  30.333

Thus T  25 is the minimum temperature and T  33.333 is the maximum temperature on the curve.

Introductory Remarks and Examples
The basic problem in the calculus of variations is to determine a function such that a certain definite
integral involving that function and certain of its derivatives takes on a maximum or minimum value.

Example 1
Consider the family of curves yx through the points P1x1,y1, and P2x2,y2 with continuous
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derivatives. The length of such a curve is given by

L  
P1

P2 ds  
P1

P2
dx2  dy2

Thus

Lyx  
x1

x2 1  dy
dx

2
dx

where yx is such that yx1  y1 and yx2  y2.
Question: What function yx makes L a minimum?

Remark: Note that we have conditions on yx.
Example 2
Determine the curve through x1,y1 and x2,y2 such that when it is rotated about the x axis it
gives the minimum surface area.

A  2yds
so that

Ayx  2 
x1

x2 yds

Ayx  2 
P1

P2 y 1  dy
dx

2
dx

where yx is such that yx1  y1 and yx2  y2 and yx is continuous.

Example 3 The Brachistochrone Problem of Bernoulli
Two points P1x,y and P2x2,y2 y1  y2  0 are to be connected by a curve along which a
frictionless mass point moves in the shortest possible time from P1 to P2 under gravity acting in
the y direction.
The initial velocity of the mass point is zero. Then

T  
P1

P2 dt  
P1

P2 ds
v  

x1

x2
1  dy

dx
2

v dx

where v is the velocity of the particle and s is arc length.
After falling a distance y1  y, we have

1
2 mv

2  mgy1  y

v2  2gy1  y
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Tyx  1
2g

x1

x2
1  dy

dx
2

y1  y
dx

Thus we want to find the curve yx that minimizes T and is such that yx1  y1 yx2  y2 and yx
is continuous.

The Simplest Case

Consider now the problem of determining a twice continuously differentiable function yx for which
the integral

Iyx  
x1

x2 F x,yx,yx dx     1

takes on a maximum or a minimum value, where yx satisfies the prescribed end conditions
yx1  y1 yx2  y2

The function F is twice continuously differentiable with respect to its three arguments x,y,y

Definition. The admissible class of functions for 1 consists of all functions yx that are continuous
and have continuous first and second derivatives and also satisfy yx1  y1,yx2  y2.
Problem: Among all admissible yx find a necessary condition that Iyx be a maximum or
minimum.
Suppose that yx is the actual minimizing function and consider x (with continuous first and
second derivatives) with the properties that

x1  x2  0

Then for any constant , the function
yx  x

is admissible.
If  is sufficiently small, then all functions yx  x will lie in a small neighborhood of yx.
Now

Iyx  x  
x1

x2 F x,yx  ,yx   dx

 

since y and  are fixed. Clearly
  0

since by assumption yx is the minimizing function. A necessary condition for a minimum at   0
is

d
d 0

 0

Thus
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lim
0

  0
  0

Now
d
d 0

 lim
0

  0
  lim

0
1
 x1

x2 F x,yx  ,yx    F x,y,y dx

The generalized mean value theorem says

Fx, s  s, t  t  Fx, s, t  Fs x, s  1s, t  2ts  Ft x, s  1s, t  2tt

where 0  1,2  1. Therefore
d
d 0

 lim
0

1
 x1

x2 Fy x,y  1,y  2   Fy x,y  1,y  2  dx

 
x1

x2 Fy x,y,y   Fy x,y,y
  dx

Integrating the last term by parts 
d
d 0

 
x1

x2 Fy  d
dx Fy dx  Fy x1

x2  0

Since x1  x2  0, the last term above vanishes and we have


x1

x2 Fy  d
dx Fy dx  0

Since  is arbitrary, by the Fundamental Lemma of the Calculus of Variations (see below), we have
derived the necessary condition

Fy  d
dx Fy  0     

Equation  is called Euler’s equation. It is a necessary condition that a function yx must satisfy if it
minimizes  at   0.
Fundamental Lemma of the Calculus of Variations.
If the relation


x1

x2
xxdx  0,

where x is continuous, holds for all functions x which vanish on the boundary and have
continuous second derivatives, then x  0 in x1,x2 .
Proof. Suppose x  0. Then at some point x  c, x  0, say. Thus  a   0, such that for
x  c  ,c  , x  0. Let x  x  c  4x  c  4 in c  ,c  , and zero
otherwise. Then


x1

x2
xxdx  

c

c
xxdx  0

since we are integrating a positive function over a positive range. This is a contradiction and therefore
x  0 in x1,x2 .

Exercise: Apply Euler’s equation to Example 1 above and show that a straight line satisfies the
necessary condition.
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Remarks: (1) In general F  Fx,y,y and the Euler eq. Fy  d
dx Fy  0 written out is

Fy  x Fy 

y Fy

dy
dx 


y
Fy

dy
dx  0

or

Fy  Fyx  Fyy
dy
dx  Fyy

d2y
dx2  0

This is a second order ordinary D.E. for y. Solving this subject to the boundary conditions
yx1  yx2  0 yields the solution.

(2) Special Cases of Interest
A.

F  Fx,y
The Euler Equation is then

d
dx Fy  0

and thus becomes
F
y

 constant

B.
F  Fy,y

Here the Euler Eq. is

Fy  Fyy
dy
dx  Fyy

d2y
dx2  0

It may be shown that

Fy  Fyy
dy
dx  Fyy

d2y
dx2  1

y
d
dx F  yFy

Therefore for this case the Euler equation can be integrated to get
F  yFy  c, c a constant

Remark: Example 2 above, namely, minimize

Ayx  2 
P1

P2 y 1  dy
dx

2
dx subject to yx1  y1,yx2  y2

may be solved using the integrated Euler equation given in Case B.

Example 3 The Brachistochrone Problem of Bernoulli

The problem sated above is essentially to minimize
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Tyx  
x1

x2 1  y 2

y1  y
dx subject to yx1  y1,yx2  y2

Here

F  F y,y 
1  y 2

y1  y

We may use the result from Case B above.

Fy 
1
2

2y

1  y 2 y1  y

Thus the equation yFy  F  c leads to

y 2

1  y 2 y1  y


1  y 2

y1  y
 c

or

y 2  1  y 2  c 1  y 2 y1  y

This may be written as
1

y1  y  c
2  c2 y 2

so
1
c2  y1  y
y1  y  y 2

or
dy
dx  

a  y1  y
y1  y where a  1

c2

This first order DE is separable

dx   y1  y
a  y1  y

dy

To integrate this let y1  y  a sin2 t
2 . Then

dx  
a sin t

2
a cos t

2
a sin t2 cos t2 dt

dx  a sin2 t
2 dt

Therefore


x1

x
dx   a sin2 t

2 dt  a 
x1

x 1  cos t
2 dt

so that
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x  x1   a2 t  sin t

y1  y  a sin2 t
2  a 1  cos t

2
These last two equations are parametric equations for x and y as a function of the parameter t. We
choose a such that when x  x2 y  y2.
The above curve is a piece of a cycloid with cusp at x1,y1.

Natural Boundary Conditions
Recall that we showed that a necessary condition for


x1

x2 F x,y,y dx

to be a minimum was that
d
d 0

 
x1

x2 Fy  d
dx Fy dx  Fy x1

x2  0     1

For the case that we considered the unknown function yx was specified at x1 and x2, and therefore it
was necessary to choose x such that x1  x2  0 in order to have y   satisfy yx1  y1
and yx2  y2. When yx is not preassigned at the endpoints, then x need not vanish there.
However, 1 must still hold. Furthermore, equation 1 must hold for all permissible ’s, and therefore
the coefficient of  in the integral must be zero. Hence we are led to the requirement that

Fy x1

x2  0

when y is not prescribed at x1 and x2. Since x1 and x2 are now arbitrary, this implies that
Fy xx1

 0 and/or Fy xx2
 0

These are called Natural Boundary Conditions.

If y is prescribed only at x  x1, then the second condition holds, but not the first. Similarly, if y is
prescribed at x  x2 then the first condition only holds.

The Variational Notation

Consider a function Gx,y, z. If we let
G  Gx  x,y  y, z  z  Gx,y, z

then the differential

dG  Gx x 
G
y y 

G
z z

represents an approximation to G if x,y, and z are small.

In the calculus of variations we considered an integrand of the form F x,y,y . For a fixed value of x
this depends on the function yx and its derivatives. In our derivation of the Euler equation for F we
changed yx into the new function y  . This is similar to the change x  x,y  y, z  z above. In
particular we are seeking an analogy to the differential dG. Note, however, that while dG represents
change in G along a particular curve, we shall be concerned with changes in F from curve to curve
(corresponding to changes in y for fixed x.
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The change in yx, namely x, is called the variation of y and is denoted by
y  

Corresponding to this change in yx for a fixed value of x, F changes by F where
F  F x,yx  ,yx    F x,y,y

By Taylor’s expansion
F  Fy  Fy   1

2! Fyy2  Fyy  2  2Fyy  

In analogy with the definition of the differential, we define

F  Fy  Fy 

as the first variation of F. Note that letting F  y  y   so that
F  Fyy  Fyy



Remark: For a complete analogy one might expect that
F  Fxx  Fyy  Fyy



However, since x remains fixed x  0.

Some Properties of  :
Given F1 x,y,y and F2 x,y,y , then

1. F1  F2  F1  F2

2. F1F2  F1F2  F2F1

3.  F1
F2

 F2F1F1F2
F2 2

Lemma. If x is the independent variable (and accordingly x  0 then the operators  and d
dx

commute, i.e.
d
dx y   dydx

Proof: y   
d
dx y 

d
dx     y   dydx

Remark: The above lemma is not generally true unless the differentiation is with respect to an
independent variable.

Lemma. If

Iy  
x1

x2 F x,y,y dx
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Then

I   
x1

x2 F x,y,y dx  
x1

x2
Fdx

Proof.

I  
x1

x2 F x,yx  ,yx    F x,y,y dx

 
x1

x2
Fdx  

x1

x2
F  2F  dx

 
x1

x2
Fdx  

x1

x2
2Fdx 

Thus

I  
x1

x2
Fdx  

x1

x2 Fy  Fy  dx

Note: F  F  2F  and I  I  2I 

Theorem. The integral

Iy  
x1

x2 F x,y,y dx

is stationary if and only if it first variation vanishes, i.e.

I   
x1

x2 F x,y,y dx  0

for every possible variation y.

Remark. From the Theorem it follows that a stationary function for an integral is one for which the
variation of that integral is zero, whereas a stationary point of a function is one at which the differential
of the function is zero.
Example: Let

Iy  
a

b
y2  y 2  xyy dx ya  y1,yb  y2

What are the conditions on yx to make I stationary?

Solution:

I  
x1

x2 2yy  2yy  xyy  xyy dx  0

where y vanishes at the end points x1 and x2.

I  
x1

x2 2yy  2y ddx y  xy
d
dx y  xy

y dx  0

Integrating by parts the second term in the integrand above we have


x1

x2 2y ddx ydx  2yy x1

x2  
x1

x2 2 ddx y
ydx  

x1

x2 2yydx

Similarly we integrate the third term in the integrand. Combining we get


x1

x2 2y  2y  xy  xy ydx  0
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Thus the Euler equation for this problem is
2y  2y  xy  xy  0

Some Generalizations

1 Higher derivatives of the dependent variable:
Consider

Iy  
x1

x2 F x,y,y,y dx

where
yx1  y1 yx2  y2

yx1  y1
 yx2  y2



What function minmizes or maximizes the above integral and satisfies the boundary condition?

If yx is the minimizing function, then we consider yx  x where
x1  x2  x1  x2  0

Now I  0 will yield a stationary condition.

I  
x1

x2 Fyy  Fyy
  Fyy

 dx  0


x1

x2 Fyy
dx  

x1

x2 Fy
d2

dx2 ydx  Fy
d
dx y


x1

x2
 

x1

x2 d
dx Fy

d
dx y dx

 Fy
d
dx y


x1

x2
 Fyy x1

x2  
x1

x2 d2

dx2 Fyydx  0

Since y and y are prescribed at x1 and x2 then y  y  0 at x1 and x2. Thus

I  
x1

x2 Fy  d
dx Fy 

d2

dx2 Fy ydx  0

Therefore the Euler equation for this problem is

Fy  d
dx Fy 

d2

dx2 Fy  0

where
yx1  y1 yx2  y2

yx1  y1
 yx2  y2



In a similar fashion one can show the for the integral

Iy  
x1

x2 F x,y,y,y,y, ,yn dx

where y,y,y,y, ,yn1 are specified at x1 and x2, that the Euler equation is

Fy  d
dx Fy 

d2

dx2 Fy 
d3

dx3 Fy   1n d
n
dxn Fyn  0

2Several Dependent Variables
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Consider

Ix,y1,y2,y3,y4, ,yn   
x1

x2 F x,y1,y2,yn,y1
 ,y2

 ,yn

where

yix1  yi
1 yix2  yi

1 i  1,2,3, ,n

If yix, for i  1,2, ,n are the minimizing functions, we consider yi  i for i  1,2, ,n where
ix1  ix2  0 for i  1,2, ,n. We form

1, ,n   Ix,y1  11,y2  22,y3  33, ,yn 

 
x1

x2 F x,y1  11,y2  22,yn  nn,y1
  11

 ,y2
  22

 ,yn  nn dx

Then 1, ,n   0, , 0 so we have the n conditions

i 12n0

 0 for i  1,2, ,n

Thus


i 12n0

 
x1

x2 Fyii  Fyi i dx  0 for i  1,2, ,n

We are thus led to n Euler equations
Fyi  d

dx Fyi  0 for i  1,2, ,n
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