Ma 530

Calculus of Variations I

We begin by recalling some results from maxima-minima problems in calculus.

The Method of Lagrange Multipliers

Suppose we want to find the stationary values of a function $f(x, y)$, that is, the points at which a function $f(x, y)$ might have either a maximum or minimum, in the case when the two variables x and y are not mutually independent, but are connected by a constraint of the form $g(x, y)=0$.

Example Suppose one wants to find the rectangle with given area 16 that has the smallest perimeter. Then if x and y are the dimensions of the rectangle, we want to maximize $f(x, y)=2(x+y)$ subject to the fact that $x y=16$. That is we want to maximize $f=2(x+y)$ subject to the condition $g(x, y)=x y-16=0$.

Suppose that the $g(x, y)=0$ curve and the level curves $f(x, y)=k$ curves in the x, y-plane look as below.

As we describe the curve $g=0$ we encounter curves $f=k$, and in general k changes monotonically, i.e., either increases or decreases. At the point where the sense in which we run through the k-scale is reversed we may expect an extremum value. From the figure this will occur at a point $\left(x_{0}, y_{0}\right)$ where the $f=k$ curve and the $g=0$ curve have tangents that are parallel. Since the normal is orthogonal to the tangent vector, this means that the normals to these curves will have the same direction. Thus at $\left(x_{0}, y_{0}\right)$

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

where λ is a constant of proportionality. Thus we have the two conditions

$$
\begin{aligned}
& f_{x}-\lambda g_{x}=0 \\
& f_{y}-\lambda g_{y}=0
\end{aligned}
$$

at the extremum point $\left(x_{0}, y_{0}\right)$. We also have the third condition $g(x, y)=0$. These three conditions allow us to solve for the three unknowns x_{0}, y_{0}, and λ. The constant λ is called a Lagrange multiplier.

We may state Lagrange's Rule:
To find the extreme values of the function $f(x, y)$ subject to the subsidiary condition $g(x, y)=0$,
(a) Find all values of x, y, λ such that

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

and

$$
g(x, y)=0
$$

(b) Evaluate f at all the points (x, y) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Example (Same as above.) Suppose one wants to find the rectangle with given area 16 that has the largest perimeter.
If x and y are the dimensions of the rectangle, we want to maximize $f(x, y)=2(x+y)$ subject to the fact that $x y=16$. That is we want to maximize $f=2(x+y)$ subject to the condition $g(x, y)=x y-16=0$. The condition $\nabla f=\lambda \nabla g$ leads to

$$
\langle 2,2\rangle=\langle\lambda y, \lambda x\rangle
$$

Thus we have that $x=y$. Then $g=0$ implies that $x=y=4$, which is a square.
The method of Lagrange Multipliers may be applied to functions of three or more variables.
Example Find the points on

$$
4 x-5 y+3 z=2
$$

which are closest to $(1,-2,3)$

Solution:

The distance is given by:

$$
\sqrt{(x-1)^{2}+(y+2)^{2}+(z-3)^{2}}
$$

It is easier to work with the square of the distance. Thus we want to minimize

$$
f(x, y, z)=(x-1)^{2}+(y+2)^{2}+(z-3)^{2}
$$

subject to the constraint

$$
g(x, y, z)=4 x-5 y+3 z-2=0
$$

Let

$$
\begin{aligned}
\nabla f & =\langle 2(x-1), 2(y+2), 2(z-3)\rangle \\
& =\lambda \nabla g \\
& =\langle 4 \lambda,-5 \lambda, 3 \lambda\rangle
\end{aligned}
$$

Then

$$
\begin{array}{r}
\frac{x-1}{2}=\lambda \\
\frac{2(y+2)}{-5}=\lambda \\
\frac{2(z-3)}{3}=\lambda
\end{array}
$$

Thus

$$
\frac{x-1}{2}=\frac{2(z-3)}{3}
$$

Solution is: $\left\{x=-3+\frac{4}{3} z\right\}$
and

$$
\frac{2(y+2)}{-5}=\frac{2(z-3)}{3}
$$

, Solution is: $\left\{y=3-\frac{5}{3} z\right\}$
But the point (x, y, z) lies on the plane and must satisfy $g(x, y, z)=4 x-5 y+3 z-2=0$, so

$$
4\left(-3+\frac{4}{3} z\right)-5\left(3-\frac{5}{3} z\right)+3 z=2
$$

Solution is: $\left\{z=\frac{87}{50}\right\}$ Thus

$$
\begin{gathered}
x=-3+\frac{4}{3}\left(\frac{87}{50}\right)=-\frac{17}{25} \\
y=3-\frac{5}{3}\left(\frac{87}{50}\right)=\frac{1}{10}
\end{gathered}
$$

Example Find the extreme values of $f(x, y)=x y$ on the circle $x^{2}+y^{2}=1$. Let $g(x . y)=x^{2}+y^{2}-1$. We have the equation

$$
\langle y, x\rangle=\langle 2 \lambda x, 2 \lambda y\rangle
$$

which leads to the three equations

$$
\begin{aligned}
& y-2 \lambda x=0 \\
& x-2 \lambda y=0 \\
& x^{2}+y^{2}=1
\end{aligned}
$$

, Solution is: $\left\{\lambda=\frac{1}{2}, y=\rho_{1}, x=\rho_{1}\right\},\left\{\lambda=-\frac{1}{2}, y=\rho_{1}, x=-\rho_{1}\right\}$ where ρ_{1} is a root of $2 \hat{Z}^{2}-1$, Thus $x_{0}=y_{0}= \pm \frac{\sqrt{2}}{2}$. We have the following results

$$
\begin{array}{llll}
x_{0} & y_{0} & f\left(x_{0}, y_{0}\right) & \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} & \text { maximum } \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} & \text { minimum } \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} & \text { minimum } \\
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} & \text { maximum }
\end{array}
$$

Example Suppose one wants to cut a beam with maximal rectangular cross section from a circular log of radius $\sqrt{2}$.

Solution.

We shall use Lagrange multipliers to show that the optimal beam has square cross section. Let the origin be at the center of the log and the beam so that the x-axis cuts the \log and beam in half horizontally and the y-axis cuts the log and beam in half vertically. (This means that the beam has dimensions $2 x$ by $2 y$.) The \log satisfies the equation

$$
x^{2}+y^{2}=2
$$

If (x, y) is the corner of the beam in first quadrant, then we must maximize the area

$$
A=f(x, y)=4 x y
$$

of the beam's rectangular cross section subject to the constraint

$$
g(x, y)=x^{2}+y^{2}-2=0
$$

Then

$$
\nabla f=\langle 4 y, 4 x\rangle=\lambda \nabla g=\langle 2 \lambda x, 2 \lambda y\rangle
$$

so that

$$
\lambda=\frac{2 y}{x}=\frac{2 x}{y}
$$

or

$$
x^{2}=y^{2}
$$

But the fact that the corner of the beam must lie on the log, that is the circle $x^{2}+y^{2}=2$, tells us that

$$
x^{2}+x^{2}=2
$$

so $x=y=1$. (Recall that (x, y) is in the first quadrant.) Thus the beam is square with dimensions $2 x=2 y=2$.

The Method of Lagrange Multipliers with Two Constraints

For optimization problems involving two constraint functions g and h, one must introduce a second Lagrange multiplier, μ, and solve the equation

$$
\nabla f=\lambda \nabla g+\mu \nabla h
$$

as illustrated in the next example.
Example Optimization with two constraints
Let

$$
T(x, y, z)=20+2 x+2 y+z^{2}
$$

represent the temperature at each point on the sphere

$$
x^{2}+y^{2}+z^{2}=11
$$

Find the extreme temperatures on the curve formed by the intersection of the plane

$$
x+y+z=3
$$

and the sphere.

Solution: Here we have two constraints

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}-11
$$

and

$$
h(x, y, z)=x+y+z-3
$$

We therefore need two constants λ and μ.

$$
\begin{aligned}
\nabla T & =\langle 2,2,2 z\rangle \\
\lambda \nabla g & =\langle 2 \lambda x, 2 \lambda y, 2 \lambda z\rangle \\
\mu \nabla h & =\langle\mu, \mu, \mu\rangle
\end{aligned}
$$

Thus

$$
\langle 2,2,2 z\rangle=\langle 2 \lambda x, 2 \lambda y, 2 \lambda z\rangle+\langle\mu, \mu, \mu\rangle
$$

We then have the system of five equations in five unknowns

$$
\begin{aligned}
2 & =2 \lambda x+\mu \\
2 & =2 \lambda y+\mu \\
2 z & =2 \lambda z+\mu \\
x^{2}+y^{2}+z^{2} & =11 \\
x+y+z & =3
\end{aligned}
$$

Subtracting the second equation from the first yields the system

$$
\begin{aligned}
\lambda(x-y) & =0 \\
2 z(1-\lambda)-\mu & =0 \\
x^{2}+y^{2}+z^{2} & =11 \\
x+y+z & =3
\end{aligned}
$$

The first equation tells that $\lambda=0$ or $x=y$. Consider each case separately.

If $\lambda=0$, then since $2=2 \lambda x+\mu$ we have that $\mu=2$. Using this in the second equation we see that $z=1$. the last two equations become

$$
x^{2}+y^{2}=10 \text { and } x+y=2
$$

Substitution yields

$$
x^{2}+(2-x)^{2}=10
$$

or

$$
x^{2}-2 x-3=0
$$

which has the solutions $x=3, x=-1$. The corresponding y values are $y=-1, y=3$, respectively. Thus if $\lambda=0$ the critical points are $(3,-1,1)$ and $(-1,3,1)$.

If $\lambda \neq 0$, then $x=y$ and the last two equations become

$$
\begin{aligned}
2 x^{2}+z^{2} & =11 \\
2 x+z & =3
\end{aligned}
$$

By substitution

$$
2 x^{2}+(3-2 x)^{2}=3
$$

or

$$
3 x^{2}-6 x-1=0
$$

, Solution is: $\left\{x=1+\frac{2}{3} \sqrt{3}\right\},\left\{x=1-\frac{2}{3} \sqrt{3}\right\}$. The corresponding values of z are $z=(3 \mp 4 \sqrt{3} / 3)$, so we have two more critical points.

To find the optimal solutions, one must compute the temperatures at the four critical points.

$$
\begin{aligned}
T(3,-1,1) & =T(-1,3,1)=25 \\
T\left(\frac{3-2 \sqrt{3}}{3}, \frac{3-2 \sqrt{3}}{3}, \frac{3+4 \sqrt{3}}{3}\right) & \approx 30.333 \\
T\left(\frac{3+2 \sqrt{3}}{3}, \frac{3+2 \sqrt{3}}{3}, \frac{3-4 \sqrt{3}}{3}\right) & \approx 30.333
\end{aligned}
$$

Thus $T=25$ is the minimum temperature and $T=33.333$ is the maximum temperature on the curve.

Introductory Remarks and Examples

The basic problem in the calculus of variations is to determine a function such that a certain definite integral involving that function and certain of its derivatives takes on a maximum or minimum value.

Example 1

Consider the family of curves $y(x)$ through the points $P_{1}\left(x_{1}, y_{1}\right)$, and $P_{2}\left(x_{2}, y_{2}\right)$ with continuous
derivatives. The length of such a curve is given by

$$
L=\int_{P_{1}}^{P_{2}} d s=\int_{P_{1}}^{P_{2}} \sqrt{(d x)^{2}+(d y)^{2}}
$$

Thus

$$
L(y(x))=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

where $y(x)$ is such that $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$.
Question: What function $y(x)$ makes L a minimum?

Remark: Note that we have conditions on $y(x)$.

Example 2

Determine the curve through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ such that when it is rotated about the x-axis it gives the minimum surface area.

$$
\Delta A=2 \pi y d s
$$

so that

$$
\begin{aligned}
& A(y(x))=2 \pi \int_{x_{1}}^{x_{2}} y d s \\
& A(y(x))=2 \pi \int_{P_{1}}^{P_{2}} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

where $y(x)$ is such that $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$ and $y^{\prime}(x)$ is continuous.

Example 3 The Brachistochrone Problem of Bernoulli

Two points $P_{1}(x, y)$ and $P_{2}\left(x_{2}, y_{2}\right) \quad\left(y_{1}>y_{2}>0\right)$ are to be connected by a curve along which a frictionless mass point moves in the shortest possible time from P_{1} to P_{2} under gravity acting in the y-direction.
The initial velocity of the mass point is zero. Then

$$
T=\int_{P_{1}}^{P_{2}} d t=\int_{P_{1}}^{P_{2}} \frac{d s}{v}=\int_{x_{1}}^{x_{2}} \frac{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}{v} d x
$$

where v is the velocity of the particle and s is arc length.
After falling a distance $y_{1}-y$, we have

$$
\begin{gathered}
\frac{1}{2} m v^{2}=m g\left(y_{1}-y\right) \\
v^{2}=2 g\left(y_{1}-y\right)
\end{gathered}
$$

$$
T(y(x))=\frac{1}{\sqrt{2 g}} \int_{x_{1}}^{x_{2}}\left(\frac{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}{\sqrt{y_{1}-y}}\right) d x
$$

Thus we want to find the curve $y(x)$ that minimizes T and is such that $y\left(x_{1}\right)=y_{1} y\left(x_{2}\right)=y_{2}$ and $y^{\prime}(x)$ is continuous.

The Simplest Case

Consider now the problem of determining a twice continuously differentiable function $y(x)$ for which the integral

$$
\begin{equation*}
I[y(x)]=\int_{x_{1}}^{x_{2}} F\left(x, y(x), y^{\prime}(x)\right) d x \tag{1}
\end{equation*}
$$

takes on a maximum or a minimum value, where $y(x)$ satisfies the prescribed end conditions

$$
y\left(x_{1}\right)=y_{1} \quad y\left(x_{2}\right)=y_{2}
$$

The function F is twice continuously differentiable with respect to its three arguments x, y, y^{\prime}
Definition. The admissible class of functions for (1) consists of all functions $y(x)$ that are continuous and have continuous first and second derivatives and also satisfy $y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$.
Problem: Among all admissible $y(x)$ find a necessary condition that $I[y(x)]$ be a maximum or minimum.
Suppose that $y(x)$ is the actual minimizing function and consider $\eta(x)$ (with continuous first and second derivatives) with the properties that

$$
\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0
$$

Then for any constant ϵ, the function

$$
y(x)+\epsilon \eta(x)
$$

is admissible.
If ϵ is sufficiently small, then all functions $y(x)+\epsilon \eta(x)$ will lie in a small neighborhood of $y(x)$.
Now

$$
\begin{aligned}
I[y(x)+\epsilon \eta(x)] & =\int_{x_{1}}^{x_{2}} F\left(x, y(x)+\epsilon \eta, y^{\prime}(x)+\epsilon \eta^{\prime}\right) d x \\
& =\Phi(\epsilon)
\end{aligned}
$$

since y and η are fixed. Clearly

$$
\Phi(\epsilon) \geq \Phi(0)
$$

since by assumption $y(x)$ is the minimizing function. A necessary condition for a minimum at $\epsilon=0$ is

$$
\left.\frac{d \Phi}{d \epsilon}\right|_{\epsilon=0}=0
$$

Thus

$$
\lim _{\epsilon \rightarrow 0} \frac{\Phi(\epsilon)-\Phi(0)}{\epsilon}=0
$$

Now

$$
\left.\frac{d \Phi}{d \epsilon}\right|_{\epsilon=0}=\lim _{\epsilon \rightarrow 0} \frac{\Phi(\epsilon)-\Phi(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{x_{1}}^{x_{2}}\left\{F\left(x, y(x)+\epsilon \eta, y^{\prime}(x)+\epsilon \eta^{\prime}\right)-F\left(x, y, y^{\prime}\right)\right\} d x
$$

The generalized mean value theorem says

$$
F(x, s+\Delta s, t+\Delta t)-F(x, s, t)=\frac{\partial F}{\partial s}\left(x, s+\theta_{1} \Delta s, t+\theta_{2} \Delta t\right) \Delta s+\frac{\partial F}{\partial t}\left(x, s+\theta_{1} \Delta s, t+\theta_{2} \Delta t\right) \Delta t
$$

where $0<\theta_{1}, \theta_{2}<1$. Therefore

$$
\begin{aligned}
\left.\frac{d \Phi}{d \epsilon}\right|_{\epsilon=0} & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{x_{1}}^{x_{2}}\left\{F_{y}\left(x, y+\epsilon \theta_{1} \eta, y^{\prime}+\epsilon \theta_{2} \eta^{\prime}\right) \epsilon \eta+F_{y^{\prime}}\left(x, y+\epsilon \theta_{1} \eta, y^{\prime}+\epsilon \theta_{2} \eta^{\prime}\right) \epsilon \eta^{\prime}\right\} d x \\
& =\int_{x_{1}}^{x_{2}}\left[F_{y}\left(x, y, y^{\prime}\right) \eta+F_{y^{\prime}}\left(x, y, y^{\prime}\right) \eta^{\prime}\right] d x
\end{aligned}
$$

Integrating the last term by parts \Rightarrow

$$
\left.\frac{d \Phi}{d \epsilon}\right|_{\epsilon=0}=\int_{x_{1}}^{x_{2}}\left[F y-\frac{d}{d x} F_{y^{\prime}}\right] \eta d x+\left[F_{y^{\prime}} \eta\right]_{x_{1}}^{x_{2}}=0
$$

Since $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$, the last term above vanishes and we have

$$
\int_{x_{1}}^{x_{2}}\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right] \eta d x=0
$$

Since η is arbitrary, by the Fundamental Lemma of the Calculus of Variations (see below), we have derived the necessary condition

$$
\begin{equation*}
F_{y}-\frac{d}{d x} F_{y^{\prime}}=0 \tag{*}
\end{equation*}
$$

Equation $(*)$ is called Euler's equation. It is a necessary condition that a function $y(x)$ must satisfy if it minimizes $\Phi(\epsilon)$ at $\epsilon=0$.

Fundamental Lemma of the Calculus of Variations.

If the relation

$$
\int_{x_{1}}^{x_{2}} \phi(x) \eta(x) d x=0
$$

where $\phi(x)$ is continuous, holds for all functions $\eta(x)$ which vanish on the boundary and have continuous second derivatives, then $\phi(x) \equiv 0$ in $\left[x_{1}, x_{2}\right]$.
Proof. Suppose $\phi(x) \neq 0$. Then at some point $x=c, \phi(x)>0$, say. Thus \exists a $\delta>0$, such that for $x \in(c-\delta, c+\delta), \quad \phi(x)>0$. Let $\eta(x)=[x-(c-\delta)]^{4}[x-(c+\delta)]^{4}$ in $(c-\delta, c+\delta)$, and zero otherwise. Then

$$
\int_{x_{1}}^{x_{2}} \phi(x) \eta(x) d x=\int_{c-\delta}^{c+\delta} \phi(x) \eta(x) d x>0
$$

since we are integrating a positive function over a positive range. This is a contradiction and therefore $\phi(x) \equiv 0$ in $\left[x_{1}, x_{2}\right]$.

Exercise: Apply Euler's equation to Example 1 above and show that a straight line satisfies the necessary condition.

Remarks: (1) In general $F=F\left(x, y, y^{\prime}\right)$ and the Euler eq. $F_{y}-\frac{d}{d x} F_{y^{\prime}}=0$ written out is

$$
F_{y}-\frac{\partial}{\partial x} F_{y^{\prime}}-\frac{\partial}{\partial y} F_{y^{\prime}} \frac{d y}{d x}-\frac{\partial}{\partial y^{\prime}} F_{y^{\prime}} \frac{d y^{\prime}}{d x}=0
$$

or

$$
F_{y}-F_{y^{\prime} x}-F_{y^{\prime} y} \frac{d y}{d x}-F_{y^{\prime} y^{\prime}} \frac{d^{2} y}{d x^{2}}=0
$$

This is a second order ordinary D.E. for y. Solving this subject to the boundary conditions $y\left(x_{1}\right)=y\left(x_{2}\right)=0$ yields the solution.
(2) Special Cases of Interest
A.

$$
F=F\left(x, y^{\prime}\right)
$$

The Euler Equation is then

$$
\frac{d}{d x} F_{y^{\prime}}=0
$$

and thus becomes

$$
\frac{\partial F}{\partial y^{\prime}}=\text { constant }
$$

B.

$$
F=F\left(y, y^{\prime}\right)
$$

Here the Euler Eq. is

$$
F_{y}-F_{y^{\prime} y} \frac{d y}{d x}-F_{y^{\prime} y^{\prime}} \frac{d^{2} y}{d x^{2}}=0
$$

It may be shown that

$$
F_{y}-F_{y^{\prime} y} \frac{d y}{d x}-F_{y^{\prime} y^{\prime}} \frac{d^{2} y}{d x^{2}}=\frac{1}{y^{\prime}} \frac{d}{d x}\left\{F-y^{\prime} F_{y^{\prime}}\right\}
$$

Therefore for this case the Euler equation can be integrated to get

$$
F-y^{\prime} F_{y^{\prime}}=c, c \text { a constant }
$$

Remark: Example 2 above, namely, minimize

$$
A(y(x))=2 \pi \int_{P_{1}}^{P_{2}} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \text { subject to } y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}
$$

may be solved using the integrated Euler equation given in Case B.

Example 3 The Brachistochrone Problem of Bernoulli

The problem sated above is essentially to minimize

$$
T(y(x))=\int_{x_{1}}^{x_{2}}\left(\frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{\sqrt{y_{1}-y}}\right) d x \text { subject to } y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}
$$

Here

$$
F=F\left(y, y^{\prime}\right)=\frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{\sqrt{y_{1}-y}}
$$

We may use the result from Case B above.

$$
F_{y^{\prime}}=\frac{1}{2} \frac{2 y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}} \sqrt{y_{1}-y}}
$$

Thus the equation $y^{\prime} F_{y^{\prime}}-F=c$ leads to

$$
\frac{\left(y^{\prime}\right)^{2}}{\sqrt{1+\left(y^{\prime}\right)^{2}} \sqrt{y_{1}-y}}-\frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{\sqrt{y_{1}-y}}=c
$$

or

$$
\left(y^{\prime}\right)^{2}-\left(1+\left(y^{\prime}\right)^{2}\right)=c \sqrt{1+\left(y^{\prime}\right)^{2}} \sqrt{y_{1}-y}
$$

This may be written as

$$
\frac{1}{y_{1}-y}-c^{2}=c^{2}\left(y^{\prime}\right)^{2}
$$

so

$$
\frac{\frac{1}{c^{2}}-\left(y_{1}-y\right)}{y_{1}-y}=\left(y^{\prime}\right)^{2}
$$

or

$$
\frac{d y}{d x}= \pm \sqrt{\frac{a-\left(y_{1}-y\right)}{y_{1}-y}} \text { where } a=\frac{1}{c^{2}}
$$

This first order DE is separable

$$
d x= \pm \sqrt{\frac{y_{1}-y}{a-\left(y_{1}-y\right)}} d y
$$

To integrate this let $y_{1}-y=a \sin ^{2} \frac{t}{2}$. Then

$$
\begin{aligned}
d x & = \pm \frac{\sqrt{a} \sin \frac{t}{2}}{\sqrt{a} \cos \frac{t}{2}}\left(-a \sin \frac{t}{2} \cos \frac{t}{2}\right) d t \\
d x & = \pm a \sin ^{2} \frac{t}{2} d t
\end{aligned}
$$

Therefore

$$
\int_{x_{1}}^{x} d x=\int \pm a \sin ^{2} \frac{t}{2} d t= \pm a \int_{x_{1}}^{x} \frac{1-\cos t}{2} d t
$$

so that

$$
\begin{aligned}
& x-x_{1}= \pm \frac{a}{2}(t-\sin t) \\
& y_{1}-y=a \sin ^{2} \frac{t}{2}=a\left(\frac{1-\cos t}{2}\right)
\end{aligned}
$$

These last two equations are parametric equations for x and y as a function of the parameter t. We choose a such that when $x=x_{2} \quad y=y_{2}$.
The above curve is a piece of a cycloid with cusp at $\left(x_{1}, y_{1}\right)$.

Natural Boundary Conditions

Recall that we showed that a necessary condition for

$$
\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x
$$

to be a minimum was that

$$
\begin{equation*}
\left.\frac{d \Phi}{d \epsilon}\right|_{\epsilon=0}=\int_{x_{1}}^{x_{2}}\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}\right] \eta d x+\left[F_{y^{\prime}} \eta\right]_{x_{1}}^{x_{2}}=0 \tag{1}
\end{equation*}
$$

For the case that we considered the unknown function $y(x)$ was specified at x_{1} and x_{2}, and therefore it was necessary to choose $\eta(x)$ such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ in order to have $y+\epsilon \eta$ satisfy $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$. When $y(x)$ is not preassigned at the endpoints, then $\eta(x)$ need not vanish there.
However, (1) must still hold. Furthermore, equation (1) must hold for all permissible η 's, and therefore the coefficient of η in the integral must be zero. Hence we are led to the requirement that

$$
\left[F_{y^{\prime}} \eta\right]_{x_{1}}^{x_{2}}=0
$$

when y is not prescribed at x_{1} and x_{2}. Since $\eta\left(x_{1}\right)$ and $\eta\left(x_{2}\right)$ are now arbitrary, this implies that

$$
\left.F_{y^{\prime}}\right|_{x=x_{1}}=0 \text { and/or }\left.F_{y^{\prime}}\right|_{x=x_{2}}=0
$$

These are called Natural Boundary Conditions.

If y is prescribed only at $x=x_{1}$, then the second condition holds, but not the first. Similarly, if y is prescribed at $x=x_{2}$ then the first condition only holds.

The Variational Notation

Consider a function $G(x, y, z)$. If we let

$$
\Delta G=G(x+\Delta x, y+\Delta y, z+\Delta z)-G(x, y, z)
$$

then the differential

$$
d G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial y} \Delta y+\frac{\partial G}{\partial z} \Delta z
$$

represents an approximation to ΔG if $\Delta x, \Delta y$, and Δz are small.

In the calculus of variations we considered an integrand of the form $F\left(x, y, y^{\prime}\right)$. For a fixed value of x this depends on the function $y(x)$ and its derivatives. In our derivation of the Euler equation for F we changed $y(x)$ into the new function $y+\epsilon \eta$. This is similar to the change $x+\Delta x, y+\Delta y, z+\Delta z$ above. In particular we are seeking an analogy to the differential $d G$. Note, however, that while $d G$ represents change in G along a particular curve, we shall be concerned with changes in F from curve to curve (corresponding to changes in y for fixed x).

The change in $y(x)$, namely $\epsilon \eta(x)$, is called the variation of y and is denoted by

$$
\delta y \equiv \epsilon \eta
$$

Corresponding to this change in $y(x)$ for a fixed value of x, F changes by ΔF where

$$
\Delta F=F\left(x, y(x)+\epsilon \eta, y^{\prime}(x)+\epsilon \eta^{\prime}\right)-F\left(x, y, y^{\prime}\right)
$$

By Taylor's expansion

$$
\Delta F=\left\{F_{y}(\epsilon \eta)+F_{y^{\prime}}\left(\epsilon \eta^{\prime}\right)\right\}+\frac{1}{2!}\left\{F_{y y}(\epsilon \eta)^{2}+F_{y^{\prime} y^{\prime}}\left(\epsilon \eta^{\prime}\right)^{2}+2 F_{y y^{\prime}}(\epsilon \eta)\left(\epsilon \eta^{\prime}\right)\right\}+\cdots
$$

In analogy with the definition of the differential, we define

$$
\delta F=F_{y}(\epsilon \eta)+F_{y^{\prime}}\left(\epsilon \eta^{\prime}\right)
$$

as the first variation of F. Note that letting $F=y^{\prime} \Rightarrow \delta y^{\prime}=\epsilon \eta^{\prime}$ so that

$$
\delta F=F_{y} \delta y+F_{y^{\prime}} \delta y^{\prime}
$$

Remark: For a complete analogy one might expect that

$$
\delta F=F_{x} \delta x+F_{y} \delta y+F_{y^{\prime}} \delta y^{\prime}
$$

However, since x remains fixed $\delta x=0$.
Some Properties of δ :
Given $F_{1}\left(x, y, y^{\prime}\right)$ and $F_{2}\left(x, y, y^{\prime}\right)$, then

1. $\delta\left(F_{1}+F_{2}\right)=\delta F_{1}+\delta F_{2}$
2. $\delta\left(F_{1} F_{2}\right)=F_{1} \delta F_{2}+F_{2} \delta F_{1}$
3. $\delta\left\{\frac{F_{1}}{F_{2}}\right\}=\frac{F_{2} \delta F_{1}-F_{1} \delta F_{2}}{\left(F_{2}\right)^{2}}$

Lemma. If x is the independent variable (and accordingly $\delta x=0$) then the operators δ and $\frac{d}{d x}$ commute, i.e.

$$
\frac{d}{d x}(\delta y)=\delta \frac{d y}{d x}
$$

Proof: $\delta y=\epsilon \eta \Rightarrow$

$$
\frac{d}{d x}(\delta y)=\frac{d}{d x}(\epsilon \eta)=\epsilon \eta^{\prime}=\delta y^{\prime}=\delta \frac{d y}{d x}
$$

Remark: The above lemma is not generally true unless the differentiation is with respect to an independent variable.

Lemma. If

$$
I[y]=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x
$$

Then

$$
\delta I=\delta \int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x=\int_{x_{1}}^{x_{2}} \delta F d x
$$

Proof.

$$
\begin{aligned}
\Delta I & =\int_{x_{1}}^{x_{2}}\left\{F\left(x, y(x)+\epsilon \eta, y^{\prime}(x)+\epsilon \eta^{\prime}\right)-F\left(x, y, y^{\prime}\right)\right\} d x \\
& =\int_{x_{1}}^{x_{2}} \Delta F d x=\int_{x_{1}}^{x_{2}}\left(\delta F+\delta^{2} F+\cdots\right) d x \\
& =\int_{x_{1}}^{x_{2}} \delta F d x+\int_{x_{1}}^{x_{2}} \delta^{2} F d x+\cdots
\end{aligned}
$$

Thus

$$
\delta I=\int_{x_{1}}^{x_{2}} \delta F d x=\int_{x_{1}}^{x_{2}}\left[F_{y}(\epsilon \eta)+F_{y^{\prime}}\left(\epsilon \eta^{\prime}\right)\right] d x
$$

Note: $\Delta F=\delta F+\delta^{2} F+\cdots$ and $\Delta I=\delta I+\delta^{2} I+\cdots$

Theorem. The integral

$$
I[y]=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x
$$

is stationary if and only if it first variation vanishes, i.e.

$$
\delta I=\delta \int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x=0
$$

for every possible variation δy.

Remark. From the Theorem it follows that a stationary function for an integral is one for which the variation of that integral is zero, whereas a stationary point of a function is one at which the differential of the function is zero.
Example: Let

$$
I[y]=\int_{a}^{b}\left[y^{2}+\left(y^{\prime}\right)^{2}+x y y^{\prime}\right] d x \quad y(a)=y_{1}, y(b)=y_{2}
$$

What are the conditions on $y(x)$ to make I stationary?

Solution:

$$
\delta I=\int_{x_{1}}^{x_{2}}\left[2 y \delta y+2 y^{\prime} \delta y^{\prime}+x y \delta y^{\prime}+x y^{\prime} \delta y\right] d x=0
$$

where δy vanishes at the end points x_{1} and x_{2}.

$$
\delta I=\int_{x_{1}}^{x_{2}}\left[2 y \delta y+2 y^{\prime} \frac{d}{d x} \delta y+x y \frac{d}{d x} \delta y+x y^{\prime} \delta y\right] d x=0
$$

Integrating by parts the second term in the integrand above we have

$$
\int_{x_{1}}^{x_{2}} 2 y^{\prime} \frac{d}{d x} \delta y d x=\left.2 y^{\prime} \delta y\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} 2 \frac{d}{d x} y^{\prime} \delta y d x=-\int_{x_{1}}^{x_{2}} 2 y^{\prime \prime} \delta y d x
$$

Similarly we integrate the third term in the integrand. Combining we get

$$
\int_{x_{1}}^{x_{2}}\left[2 y-2 y^{\prime \prime}-(x y)^{\prime}+x y^{\prime}\right] \delta y d x=0
$$

Thus the Euler equation for this problem is

$$
2 y-2 y^{\prime \prime}-(x y)^{\prime}+x y^{\prime}=0
$$

Some Generalizations

(1) Higher derivatives of the dependent variable:

Consider

$$
I[y]=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x
$$

where

$$
\begin{array}{rl}
y\left(x_{1}\right)=y_{1} & y\left(x_{2}\right)=y_{2} \\
y^{\prime}\left(x_{1}\right)=y_{1}^{\prime} & y^{\prime}\left(x_{2}\right)=y_{2}^{\prime}
\end{array}
$$

What function minmizes or maximizes the above integral and satisfies the boundary condition?
If $y(x)$ is the minimizing function, then we consider $y(x)+\epsilon \eta(x)$ where

$$
\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=\eta^{\prime}\left(x_{1}\right)=\eta^{\prime}\left(x_{2}\right)=0
$$

Now $\delta I=0$ will yield a stationary condition.

$$
\begin{gathered}
\delta I=\int_{x_{1}}^{x_{2}}\left[F_{y} \delta y+F_{y^{\prime}} \delta y^{\prime}+F_{y^{\prime \prime}} \delta y^{\prime \prime}\right] d x=0 \\
\int_{x_{1}}^{x_{2}} F_{y^{\prime \prime}} \delta y^{\prime \prime} d x=\int_{x_{1}}^{x_{2}} F_{y^{\prime \prime}} \frac{d^{2}}{d x^{2}} \delta y d x=\left.F_{y^{\prime \prime}} \frac{d}{d x} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} \frac{d}{d x} F_{y^{\prime \prime}} \frac{d}{d x}\left(\delta y^{\prime}\right) d x \\
=\left.F_{y^{\prime \prime}} \frac{d}{d x} \delta y^{\prime}\right|_{x_{1}} ^{x_{2}}-\left.F_{y^{\prime \prime}} \delta y\right|_{x_{1}} ^{x_{2}}+\int_{x_{1}}^{x_{2}} \frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}} \delta y d x=0
\end{gathered}
$$

Since y and y^{\prime} are prescribed at x_{1} and x_{2} then $\delta y=\delta y^{\prime}=0$ at x_{1} and x_{2}. Thus

$$
\delta I=\int_{x_{1}}^{x_{2}}\left[F_{y}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}\right] \delta y d x=0
$$

Therefore the Euler equation for this problem is

$$
F_{y}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}=0
$$

where

$$
\begin{array}{rl}
y\left(x_{1}\right)=y_{1} & y\left(x_{2}\right)=y_{2} \\
y^{\prime}\left(x_{1}\right)=y_{1}^{\prime} & y^{\prime}\left(x_{2}\right)=y_{2}^{\prime}
\end{array}
$$

In a similar fashion one can show the for the integral

$$
I[y]=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \ldots, y^{(n)}\right) d x
$$

where $y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \ldots, y^{(n-1)}$ are specified at x_{1} and x_{2}, that the Euler equation is

$$
F_{y}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}-\frac{d^{3}}{d x^{3}} F_{y^{\prime \prime \prime}}+\cdots+(-1)^{n} \frac{d^{n}}{d x^{n}} F_{y^{(n)}}=0
$$

(2)Several Dependent Variables

Consider

$$
I\left[x, y_{1}, y_{2}, y_{3}, y_{4}, \ldots, y_{n}\right]=\int_{x_{1}}^{x_{2}} F\left(x, y_{1}, y_{2}, \ldots y_{n}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots y_{n}^{\prime}\right)
$$

where

$$
y_{i}\left(x_{1}\right)=y_{i}^{(1)} \quad y_{i}\left(x_{2}\right)=y_{i}^{(1)} \quad i=1,2,3, \ldots, n
$$

If $y_{i}(x)$, for $i=1,2, \ldots, n$ are the minimizing functions, we consider $y_{i}+\epsilon \eta_{i}$ for $i=1,2, \ldots, n$ where $\eta_{i}\left(x_{1}\right)=\eta_{i}\left(x_{2}\right)=0$ for $i=1,2, \ldots, n$. We form

$$
\begin{aligned}
\Phi\left[\epsilon_{1}, \ldots, \epsilon_{n}\right] & =I\left[x, y_{1}+\epsilon_{1} \eta_{1}, y_{2}+\epsilon_{2} \eta_{2}, y_{3}+\epsilon_{3} \eta_{3}, \ldots, y_{n}\right] \\
& =\int_{x_{1}}^{x_{2}} F\left(x, y_{1}+\epsilon_{1} \eta_{1}, y_{2}+\epsilon_{2} \eta_{2}, \ldots y_{n}+\epsilon_{n} \eta_{n}, y_{1}^{\prime}+\epsilon_{1} \eta_{1}^{\prime}, y_{2}^{\prime}+\epsilon_{2} \eta_{2}^{\prime}, \ldots y_{n}^{\prime}+\epsilon_{n} \eta_{n}\right) d x
\end{aligned}
$$

Then $\Phi\left[\epsilon_{1}, \ldots, \epsilon_{n}\right] \geq \Phi[0, \ldots, 0]$ so we have the n conditions

$$
\left.\frac{\partial \Phi}{\partial \epsilon_{i}}\right|_{\epsilon_{1}=\epsilon_{2}=\cdots=\epsilon_{n}=0}=0 \text { for } i=1,2, \ldots, n
$$

Thus

$$
\left.\frac{\partial \Phi}{\partial \epsilon_{i}}\right|_{\epsilon_{1}=\epsilon_{2}=\cdots=\epsilon_{n}=0}=\int_{x_{1}}^{x_{2}}\left[F_{y_{i} \eta_{i}}+F_{y_{i}}^{\prime} \eta_{i}\right] d x=0 \text { for } i=1,2, \ldots, n
$$

We are thus led to n Euler equations

$$
F_{y_{i}}-\frac{d}{d x} F_{y_{i}^{\prime}}=0 \text { for } i=1,2, \ldots, n
$$

