Ma 530

Euler's Equation

The differential equation

$$
x^{2} y^{\prime \prime}+p x y^{\prime}+q y=f(x)
$$

where p and q are constants is called Euler's Equation (or the Cauchy-Euler Equation).

Consider the homogeneous case

$$
\begin{equation*}
x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0 . \tag{2}
\end{equation*}
$$

Once we find y_{h} then we can find y_{p} for (1) by variation of parameters. We consider (2) only for the case $x>0$ so that coefficient on $y^{\prime \prime}$ does not vanish. Notice that each term contains some power of x if we try $y=x^{m}$. Hence we seek a homogeneous solution of the form

$$
y_{h}=x^{m}
$$

and shall try to determine m so that x^{m} is a solution. Now

$$
y_{h}^{\prime}=m x^{m-1} \text { and } y_{h}^{\prime \prime}=m(m-1) x^{m-2}
$$

so that the differential equation \Rightarrow

$$
x^{m}[m(m-1)+p m+q]=0 \Rightarrow x^{m}\left[m^{2}+m(p-1)+q\right]=0 .
$$

Since $x^{m} \neq 0 \Rightarrow$

$$
\begin{equation*}
m^{2}+m(p-1)+q=0 . \tag{3}
\end{equation*}
$$

(3) is call the indicial equation for m. It has solutions

$$
m=\frac{-(p-1) \pm \sqrt{(p-1)^{2}-4 q}}{2}
$$

Let $\triangle=(p-1)^{2}-4 q$ Then we have three cases just as we had for second order equations with constant coefficients.

Case 1. $\Delta>0 \Rightarrow 2$ distinct roots $m_{1}, m_{2} \Rightarrow$

$$
y_{h}=c_{1} x^{m_{1}}+c_{2} x^{m_{2}} .
$$

Case 2. $\Delta=0 \Rightarrow$

$$
m_{1}=\frac{1-p}{2} .
$$

To get a second solution let $y=u(x) x^{m_{1}}$, where $u(x)$ is a function to be determined. Equation (2) \Rightarrow

$$
x u^{\prime \prime}+u^{\prime}=0 .
$$

Letting $v=u^{\prime} \Rightarrow x v^{\prime}+v=0 \Rightarrow$

$$
v^{\prime}+\frac{v}{x}=0 .
$$

The integrating factor for this equation is $e^{\int \frac{1}{x} d x}=e^{\ln x}=x \Rightarrow \frac{d}{d x}(x v)=0 \Rightarrow x v=c_{1} \Rightarrow v=\frac{c_{1}}{x}$
$u=\int v=c_{1} \ln x+c_{2}$
\Rightarrow

$$
y_{h}=x^{m_{1}}\left[c_{1} \ln x+c_{2}\right]
$$

Case 3. $\Delta<0 \Rightarrow$ roots are complex conjugates, $m_{1}=a+b i$ and $m_{2}=a-b i$.
Thus

$$
y_{h}=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}=c_{1} x^{a+b i}+c_{2} x^{a-b i}
$$

or

$$
y_{h}=x^{a}\left[c_{1} x^{b i}+c_{2} x^{-b i}\right] .
$$

Now

$$
\begin{array}{cc}
& x^{a+b i}=e^{(a+i b) \ln x} \text { for } x>0 . \\
\Rightarrow & x^{b i}=e^{i b \ln x}=\cos (b \ln x)+i \sin (b \ln x) \\
\Rightarrow & y_{h}=x^{a}[A \cos (b \ln x)+B \sin (b \ln x)] .
\end{array}
$$

Example Solve

$$
x^{2} y^{\prime \prime}+7 x y^{\prime}+5 y=0
$$

Here $p=7$ and $q=5$. The indicial equation (3) is for this example

$$
\begin{aligned}
m^{2}+m(p-1)+q & = \\
m^{2}+6 m+5 & =(m+5)(m+1)
\end{aligned}
$$

$\Rightarrow m=-5$ or $-1 \Rightarrow$

$$
y=c_{1} x^{-5}+c_{2} x^{-1}=\frac{c_{1}}{x^{5}}+\frac{c_{2}}{x}
$$

