Ma 530

Special Methods for First Order Equations

Consider the equation

$$M(x, y) + N(x, y)y' = 0$$
 (1)

This equation is first order and first degree. The functions M(x,y) and N(x,y) are given. Often we write this as

$$M(x,y)dx + N(x,y)dy = 0 (2)$$

Separation of Variables

Equation (2) takes a simple form in the special case when

$$M(x,y) = A(x)$$
 and $N(x,y) = B(y)$.

 \Rightarrow

$$A(x)dx + B(y)dy = 0$$

That is the variables separate.

If we Integrate \Rightarrow

$$\int A(x)dx + \int B(y)dy = c.$$

Example $x^2dx + ydy = 0 \Rightarrow$

$$\int x^2 dx + \int y dy = c.$$

Which leads to

$$\frac{x^3}{3} + \frac{y^2}{2} = c.$$

Now consider the I.V.P.

D.E.
$$A(x)dx + B(y)dy = 0$$

I.C. $y(x_0) = y_0$

Integrating from $(x_0, y_0) \rightarrow (x, y) \Rightarrow$

$$\int_{x_0}^{x} A(x) dx + \int_{y_0}^{y} B(y) dy = 0$$

.

Example D.E. $\cos x \, dx + y^2 dy = 0$ I.C. $y(\pi) = 0$

$$\int_{\pi}^{x} \cos x \, dx + \int_{0}^{y} y^{2} \, dy = 0 \quad \Rightarrow \quad \sin x \mid_{\pi}^{x} + \frac{y^{3}}{3} \mid_{0}^{y} = 0$$
or $\sin x - \sin \pi + \frac{y^{3}}{3} = 0 \quad \Rightarrow \sin x + \frac{y^{3}}{3} = 0 \quad \Rightarrow$

$$y^{3} = -3\sin x$$

Example Solve xdy + ydx = 0 This equation is not separable as is. Divide by $xy \Rightarrow$

$$\frac{dy}{v} + \frac{dx}{x} = 0$$

 $\Rightarrow \ln x + \ln y = c \text{ or } \ln|xy| = c \Rightarrow |xy| = k$ $\Rightarrow xy = \pm k \Rightarrow$

$$y = \frac{k}{x} \qquad \forall x \neq 0.$$

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

First Order linear differential equations

Clearly not all equations are as simple as the equation A(x)dx + B(y)dy = 0. Consider the equation

$$a(x)\frac{dy}{dx} + b(x)y = c(x).$$

Assuming $a(x) \neq 0$ we divide by $a(x) \Rightarrow$

$$v' + P(x)v = O(x)$$
 (1)

or

$$dy + (P(x)y - Q(x))dx = 0.$$

We want to solve (1). Consider first the homogeneous problem

$$v' + P(x)v = 0.$$

 \Rightarrow

$$\frac{dy}{y} + P(x)dx = 0$$

which is separable.

$$\Rightarrow \ln|y| + \int P(x)dx = c \qquad \Rightarrow |y| = e^{c - \int P(x)dx}$$

Hence

$$v = \pm e^{c} e^{-\int P(x)dx} = ke^{-\int P(x)dx}$$

is the homogeneous solution.

Non-homogeneous case:

$$\frac{dy}{dx} + P(x)y = Q(x).$$

We shall use variation of parameters. Note that any constant times $e^{-\int P(x)dx}$ is also a solution of the homogeneous equation (1).

To solve the nonhomogeneous equation we shall try a function times $e^{-\int P(x)dx}$ i.e.

$$y = v(x)e^{-\int P(x)dx}$$

 \Rightarrow

$$y' = v'e^{-\int P(x)dx} + ve^{-\int P(x)dx}(-P(x)).$$

Now the D.E. \Rightarrow

$$v'e^{-\int P(x)dx} + ve^{-\int P(x)dx}(-P(x)) + P(x)ve^{-\int P(x)dx} = Q$$

 \Rightarrow

$$v' = Qe^{\int P(x)dx}$$

 \Rightarrow

$$v = \int Q e^{\int P(x)dx} + c.$$

Therefore the solution is

$$y = ve^{-\int P(x)dx} = ce^{-\int P(x)dx} + \left(\int Qe^{\int P(x)dx}\right) e^{-\int P(x)}$$

homogeneous solution + particular solution

Example: $y' + \frac{y}{x+1} = x^2$ $P = \frac{1}{x+1} Q = x^2$.

Consider $y' + \frac{y}{x+1} = 0 \Rightarrow \frac{dy}{y} + \frac{dx}{x+1} = 0$ or $\ln|y(x+1)| = c \Rightarrow y = k/(x+1)$.

Using the formula for the homogeneous solution, we have

$$y = ke^{-\int P(x)dx} = ke^{-\int \frac{dx}{x+1}} = ke^{-\ln(x+1)} = \frac{k}{x+1}$$

.

We now solve the nonhomogeneous equation. Since $y = ve^{-\int P(x)dx} = \frac{v}{x+1}$

 $y' = \frac{v'}{x+1} - \frac{v}{(x+1)^2}$

The D.E. \Rightarrow

$$\frac{v'}{x+1} - \frac{v}{(x+1)^2} + \frac{v}{(x+1)^2} = x^2$$

 \Rightarrow

$$v' = x^2(x+1) = x^3 + x^2$$

Thus

$$v = \frac{x^4}{4} + \frac{x^3}{3} + c$$

and therefore

$$y = \frac{c}{x+1} + \frac{\frac{x^4}{4} + \frac{x^3}{3}}{x+1}$$

.

Remark: The variation of parameters method works because the assumption $y = ve^{-\int Pdx}$ leads to $v' = Qe^{\int Pdx}$. Since v = y $e^{\int Pdx}$ \Rightarrow

$$\frac{d}{dx}\left(ye^{\int Pdx}\right) = Qe^{\int Pdx}$$

 \Rightarrow

$$e^{\int Pdx} \left[y' + Py \right] = Qe^{\int Pdx}.$$

Therefore if we multiply the original equation by $e^{\int Pdx}$ \Rightarrow we get an integrable form right away.

Example
$$y' + \frac{y}{x+1} = x^2$$
 (Again)
$$P = \frac{1}{x+1} \qquad e^{\int Pdx} = e^{\int \frac{dx}{x+1}} = e^{\ln(x+1)} = x+1 \Rightarrow (x+1)y' + y = x^2(x+1)$$

or

$$\frac{d}{dx}[(x+1)y] = x^2(x+1)$$

 \Rightarrow

$$(x+1)y = \frac{x^4}{4} + \frac{x^3}{3} + c$$

as before.

Summary:

To solve y' + Py = Q multiply both sides by the integrating factor $I = e^{\int Pdx}$. Then the L.H.S. becomes

$$\frac{d}{dx}\left(ye^{\int Pdx}\right) = e^{\int Pdx}Q$$

and the solution is found by integrating both sides. This is called the Method of the Integrating Factor.

We can use the above to solve the I.V.P.

D.E.
$$y' + P(x)y = Q(x)$$

I.C. $y(x_0) = y_0$

Use the integrating factor

$$I = e^{\int_{x_0}^x P(t)dt}$$

and integrate both sides from x_0 to x.

Example Here are two video slide show examples. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.

Example The equation

$$\frac{dy}{dx} + P(x)y = Q(x)y^n \qquad n \text{ any real number}$$

is known as Bernoulli's equation.

We shall suppose that $n \neq 0$ or 1, since we already know how to solve the equation for these two cases. Multiplying by y^{-n} yields

$$y^{-n}y' + P(x)y^{-n+1} = Q(x)$$
Let $z = y^{-n+1}$ Then $z' = (-n+1)y^{-n}y' \Rightarrow \frac{z'}{1-n} + P(x)z = Q(x)$.

This is a linear differential equation for z which can be solved. For example, consider the equation

$$x\frac{dy}{dx} + y = xy^{-4}$$

 \Rightarrow

$$y' + \frac{1}{x}y = y^{-4}$$
 $(n = -4)$

 \Rightarrow

$$y^4y' + \frac{y^5}{x} = 1$$

Let $z = y^5 \implies z' = 5y^4y' \implies$

$$\frac{z'}{5} + \frac{z}{x} = 1$$

 \Rightarrow

$$z' + \frac{5}{x}z = 5$$

Thus the integrating factor is $e^{\int \frac{5}{x} dx} = e^{5lnx} = x^5$ so we have

$$\frac{d}{dx}(x^5z) = 5x^5$$

 \Rightarrow

$$\Rightarrow$$

$$z = 5\frac{x}{6} + cx^{-5}$$

 $x^5z = 5\frac{x^6}{6} + c$

Since
$$z = y^5 \Rightarrow$$

$$y^5 = 5\frac{x}{6} + cx^{-5}.$$

Exact Differential Equations

Definition: The differential expression

$$M(x,y)dx + N(x,y)dy$$

is called exact $\Leftrightarrow \exists$ a function f(x,y) that is differentiable in some region R of the x,y-plane, i.e. $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist and are continuous in R and such that

$$\frac{\partial f}{\partial x} = M$$
 $\frac{\partial f}{\partial y} = N$ $\forall (x,y) \in R.$

Remark: Since $df(x,y) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \Rightarrow Mdx + Ndy$ is exact $\Leftrightarrow df(x,y) = Mdx + Ndy$.

Definition: The differential equation

$$M(x,y)dx + N(x,y)dy = 0 (1)$$

is called an exact differential equation if the left hand side is an exact differential.

Remark: When the differential equation (1) is exact

 \Rightarrow

$$df(x,y) = Mdx + Ndy = 0 (2).$$

Using this we may solve the differential equation. For if y(x) is the solution, then (2) may be integrated with respect to x to yield

$$f(x,y) = c (3).$$

Conversely if (3) defines y as a differential function of x, then this y(x) is a solution of the differential equation. For (3) \Rightarrow

$$\frac{df}{dx} = 0 = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

by the chain rule. \Rightarrow

$$M + N \frac{dy}{dx} = 0.$$

Example: xdy + ydx = 0

Here M = v and N = x

Consider f(x, y) = xy

$$df(x, y) = xdy + ydx$$

Since $f_x = y$ and $f_y = x$

$$df = f_x dx + f_y dy = ydx + xdy = 0$$

Therefore

$$f(x,y) = xy = c$$

determines the solution. \Rightarrow

$$y = \frac{c}{x}$$

Check $\frac{dy}{dx} = -\frac{c}{x^2}$ $dy = -\frac{c}{x^2} dx$. $\Rightarrow xdy + ydx = x \left(-\frac{c}{x^2} dx\right) + \frac{c}{x} dx = 0$.

Thus if we know that a certain differential equation is exact we can solve it.

Question: When is a differential equation exact? The answer is given by following theorem.

Theorem If M(x,y) and N(x,y) are continuous functions and have continuous partial derivatives in some region R of the x,y-plane, then the expression

$$M(x,y)dx + N(x,y)dy$$

is an exact differential ⇔

$$M_v = N_x$$

throughout R.

Remark: If $f_x = M$ and $f_y = N$, then $\Rightarrow f_{xy} = M_y = N_x = f_{yx}$.

Example: ydx + xdy Here M = y and N = x so that $M_y = 0 = N_x$ and we see that this equation is exact.

Example: $e^x \cos y dx = e^x \sin y dy$

We rewrite the equation as

$$e^x \cos y dx - e^x \sin y dy = 0.$$

Thus

 $M = e^x \cos y$ and $N = -e^x \sin y$ and therefore $M_y = -e^x \sin y$ and $N_x = -e^x \sin y$. Therefore this equation is exact. $\Rightarrow \exists f(x,y)$ such that $f_x = M f_y = N$, i.e.,

$$\frac{\partial f}{\partial x} = e^x \cos y$$

 \Rightarrow

$$f(x,y) = \int e^x \cos y \ dx + g(y) = e^x \cos y + g(y).$$

g(y) = ? We must have

$$\frac{\partial f}{\partial y} = N = -e^x \sin y.$$

Now

$$\frac{\partial f}{\partial y} = -e^x \sin y + g'(y) = -e^x \sin y$$

 $\Rightarrow g'(y) = 0 \Rightarrow g = const = c$ Therefore

$$f(x,y) = e^x \cos y + c$$

 \Rightarrow solution is f(x,y) = k, i.e.

$$e^x cos v = c + k = k'$$
.

Example Here is a video slide show example. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Integrating factors

Recall: M(x,y)dx + N(x,y)dy = 0 is exact $\Leftrightarrow M_y = N_x$. When the equation is exact, $\Rightarrow \exists f(x,y)$ such that $f_x = M$ and $f_y = N$ and df = Mdx + Ndy = 0. $\Rightarrow f(x,y) = c$ gives the solution to the equation.

Clearly not every differential equation is exact.

Question: Can we make Mdx + Ndy = 0 exact when it is not?

We want to find a function u(x,y) such that when we multiply the differential equation by u(x,y), then

$$uMdx + uNdy = 0$$

is exact. u(x,y) is called an integrating factor.

Example $ydx + (y^2 - x)dy = 0$

$$M = y$$
 $N = y^2 - x$

 $M_y = 1$ $N_x = -1$ Thus the equation is not exact.

We multiply by a function u so that

$$uydx + u(y^2 - x)dy = 0$$

is exact.

 \Rightarrow

$$[uy]_v = [u(v^2 - x)]_x$$

 \Rightarrow

$$u_y y + u = u_x (y^2 - x) - u.$$

This last equation is harder to solve in general than the original. However, we do not need the general solution. We need any u which when multiplied times the equation makes it exact. If we assume $u_x = 0$, then u = u(y), i.e. u is only a function of y and our partial differential equation for u becomes the ordinary differential equation

$$y\frac{du}{dy} + 2u = 0$$

which has the solution $u = \frac{1}{y^2}$. Multiplying the original equation by this u yields

$$\frac{1}{y} dx + \left(1 - \frac{x}{v^2}\right) dy = 0$$

Since now M = $\frac{1}{y}$ and N = $(1 - \frac{x}{y^2})$ \Rightarrow M_y = $-\frac{1}{y^2}$ = N_x \Rightarrow this new equation is exact.

 $f_x = \frac{1}{y}$

 \Rightarrow

$$f = \frac{x}{y} + g(y).$$

Hence

$$f_y = -\frac{x}{y^2} + g'(y) = -\frac{x}{y^2} + 1$$

$$\Rightarrow g'(y) = 1 \Rightarrow g = y + c$$

Therefore

$$f(x,y) = \frac{x}{y} + y + c$$

and the solution is $\frac{x}{y} + y = k$.

Example -ydx + xdy = 0

N = x $M = -y \Rightarrow M_y = -1$ and $N_x = 1$ Clearly this equation is not exact.

Multiply by *u* and get

$$-u(y)dx + u(x)dy = 0.$$

Then

 $M_y = u + yu_y$ and $N_x = -u - u_x x$.

$$u + yu_v = -u - u_x x$$

Setting $u_y = 0$ yields $u = \frac{1}{x^2} \Rightarrow$

$$-\frac{y}{x^2}dx + \frac{1}{x}dy = 0$$

This new equation is exact.

 \Rightarrow

$$f_x = -\frac{y}{x^2}$$
 and $f_y = -\frac{y}{x^2}$

 \Rightarrow

$$f = \frac{y}{x} + h(x)$$

$$f_x = -\frac{y}{x^2} + h'(x) = -\frac{y}{x^2}$$

 \Rightarrow

$$h' = 0$$

 \Rightarrow

$$h = c \Rightarrow f = \frac{y}{x} + c$$

 \Rightarrow solution is

$$\frac{y}{x} = k$$