## Ma 530

## Special Methods for First Order Equations

Consider the equation

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \tag{1}
\end{equation*}
$$

This equation is first order and first degree. The functions $M(x, y)$ and $N(x, y)$ are given.
Often we write this as

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

## Separation of Variables

Equation (2) takes a simple form in the special case when

$$
M(x, y)=A(x) \text { and } N(x, y)=B(y) .
$$

$$
\Rightarrow
$$

$$
A(x) d x+B(y) d y=0
$$

That is the variables separate.
If we Integrate $\Rightarrow$

$$
\int A(x) d x+\int B(y) d y=c .
$$

Example $x^{2} d x+y d y=0 \Rightarrow$

$$
\int x^{2} d x+\int y d y=c
$$

Which leads to

$$
\frac{x^{3}}{3}+\frac{y^{2}}{2}=c .
$$

Now consider the I.V.P.

$$
\text { D.E. } \begin{aligned}
A(x) d x+B(y) d y & =0 \\
\text { I.C. } y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

Integrating from $\left(x_{0}, y_{0}\right) \rightarrow(x, y) \Rightarrow$

$$
\int_{x_{0}}^{x} A(x) d x+\int_{y_{0}}^{y} B(y) d y=0
$$

Example D.E. $\cos x d x+y^{2} d y=0$ I.C. $y(\pi)=0$

$$
\begin{aligned}
& \int_{\pi}^{x} \cos x d x+\int_{0}^{y} y^{2} d y=\left.0 \Rightarrow \sin x\right|_{\pi} ^{x}+\left.\frac{y^{3}}{3}\right|_{0} ^{y}=0 \\
& \text { or } \sin x-\sin \pi+\frac{y^{3}}{3}=0 \Rightarrow \sin x+\frac{y^{3}}{3}=0 \Rightarrow \\
& y^{3}=-3 \sin x
\end{aligned}
$$

Example Solve $x d y+y d x=0 \quad$ This equation is not separable as is.
Divide by $x y \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \ln x+\ln y=c \text { or } \ln |x y|=c \Rightarrow|x y|=k \\
& \Rightarrow x y= \pm k \Rightarrow \\
& \\
& \qquad y=\frac{d y}{y}+\frac{d x}{x}=0 \\
& \\
& \Rightarrow x \neq 0 .
\end{aligned}
$$

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

## First Order linear differential equations

Clearly not all equations are as simple as the equation $A(x) d x+B(y) d y=0$. Consider the equation

$$
a(x) \frac{d y}{d x}+b(x) y=c(x)
$$

Assuming $a(x) \neq 0$ we divide by $a(x) \Rightarrow$

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x) \tag{1}
\end{equation*}
$$

or

$$
d y+(P(x) y-Q(x)) d x=0
$$

We want to solve (1). Consider first the homogeneous problem

$$
y^{\prime}+P(x) y=0
$$

$\Rightarrow$

$$
\frac{d y}{y}+P(x) d x=0
$$

which is separable.

$$
\Rightarrow \ln |y|+\int P(x) d x=c \quad \Rightarrow|y|=e^{c-\int P(x) d x}
$$

Hence

$$
y= \pm e^{c} e^{-\int P(x) d x}=k e^{-\int P(x) d x}
$$

is the homogeneous solution.

Non-homogeneous case:

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

We shall use variation of parameters. Note that any constant times $e^{-\int P(x) d x}$ is also a solution of the homogeneous equation (1).
To solve the nonhomogeneous equation we shall try a function times $e^{-\int P(x) d x}$ i.e.

$$
\begin{gathered}
y=v(x) e^{-\int P(x) d x} \\
y^{\prime}=v^{\prime} e^{-\int P(x) d x}+v e^{-\int P(x) d x}(-P(x)) .
\end{gathered}
$$

Now the D.E. $\Rightarrow$

$$
v^{\prime} e^{-\int P(x) d x}+v e^{-\int P(x) d x}(-P(x))+P(x) v e^{-\int P(x) d x}=Q
$$

$\Rightarrow$

$$
\begin{gathered}
v^{\prime}=Q e^{\int P(x) d x} \\
v=\int Q e^{\int P(x) d x}+c .
\end{gathered}
$$

Therefore the solution is

$$
y=v e^{-\int P(x) d x}=c e^{-\int P(x) d x}+\left(\int Q e^{\int P(x) d x}\right) e^{\left.-\int P(x)\right)}
$$

homogeneous solution + particular solution
Example: $y^{\prime}+\frac{y}{x+1}=x^{2} \quad P=\frac{1}{x+1} Q=x^{2}$.
Consider $y^{\prime}+\frac{y}{x+1}=0 \Rightarrow \frac{d y}{y}+\frac{d x}{x+1}=0$ or $\ln |y(x+1)|=c \Rightarrow y=k /(x+1)$.
Using the formula for the homogeneous solution, we have

$$
y=k e^{-\int P(x) d x}=k e^{-\int \frac{d x}{x+1}}=k e^{-\ln (x+1)}=\frac{k}{x+1}
$$

We now solve the nonhomogeneous equation. Since $y=v e^{-\int P(x) d x}=\frac{v}{x+1}$ $\Rightarrow$

$$
y^{\prime}=\frac{v^{\prime}}{x+1}-\frac{v}{(x+1)^{2}}
$$

The D.E. $\Rightarrow$

$$
\frac{v^{\prime}}{x+1}-\frac{v}{(x+1)^{2}}+\frac{v}{(x+1)^{2}}=x^{2}
$$

$\Rightarrow$

$$
v^{\prime}=x^{2}(x+1)=x^{3}+x^{2}
$$

Thus

$$
v=\frac{x^{4}}{4}+\frac{x^{3}}{3}+c
$$

and therefore

$$
y=\frac{c}{x+1}+\frac{\frac{x^{4}}{4}+\frac{x^{3}}{3}}{x+1}
$$

Remark: The variation of parameters method works because the assumption $y=v e^{-\int P d x}$ leads to $v^{\prime}$ $=Q e^{\int P d x}$. Since $v=y e^{\int P d x} \Rightarrow$

$$
\frac{d}{d x}\left(y e^{\int P d x}\right)=Q e^{\int P d x}
$$

$\Rightarrow$

$$
e^{\int P d x}\left[y^{\prime}+P y\right]=Q e^{\int P d x}
$$

Therefore if we multiply the original equation by $e^{\int P d x} \Rightarrow$ we get an integrable form right away.

Example $y^{\prime}+\frac{y}{x+1}=x^{2}$ (Again)
$P=\frac{1}{x+1} \quad e^{\int P d x}=e^{\int \frac{d x}{x+1}}=e^{\ln (x+1)}=x+1 \Rightarrow$

$$
(x+1) y^{\prime}+y=x^{2}(x+1)
$$

or

$$
\frac{d}{d x}[(x+1) y]=x^{2}(x+1)
$$

$\Rightarrow$

$$
(x+1) y=\frac{x^{4}}{4}+\frac{x^{3}}{3}+c
$$

as before.

## Summary:

To solve $y^{\prime}+P y=Q$ multiply both sides by the integrating factor $I=e^{\int P d x}$. Then the L.H.S. becomes

$$
\frac{d}{d x}\left(y e^{\int P d x}\right)=e^{\int P d x} Q
$$

and the solution is found by integrating both sides. This is called the Method of the Integrating Factor.

We can use the above to solve the I.V.P.

$$
\begin{aligned}
\text { D.E. } y^{\prime}+P(x) y & =Q(x) \\
\text { I.C. } y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

Use the integrating factor

$$
I=e^{\int_{x_{0}}^{x} P(t) d t}
$$

and integrate both sides from $x_{0}$ to $x$.
Example Here are two video slide show examples. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.
Example The equation

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \quad n \text { anyrealnumber }
$$

is known as Bernoulli's equation.
We shall suppose that $n \neq 0$ or 1 , since we already know how to solve the equation for these two cases. Multiplying by $y^{-n}$ yields

$$
y^{-n} y^{\prime}+P(x) y^{-n+1}=Q(x)
$$

Let $z=y^{-n+1}$ Then $z^{\prime}=(-n+1) y^{-n} y^{\prime} \Rightarrow$

$$
\frac{z^{\prime}}{1-n}+P(x) z=Q(x) .
$$

This is a linear differential equation for $z$ which can be solved. For example, consider the equation

$$
\Rightarrow \begin{array}{cc} 
& x \frac{d y}{d x}+y=x y^{-4} \\
\Rightarrow & y^{\prime}+\frac{1}{x} y=y^{-4} \quad(n=-4) \\
& y^{4} y^{\prime}+\frac{y^{5}}{x}=1
\end{array}
$$

Let $z=y^{5} \Rightarrow z^{\prime}=5 y^{4} y^{\prime} \Rightarrow$

$$
\frac{z^{\prime}}{5}+\frac{z}{x}=1
$$

$\Rightarrow$

$$
z^{\prime}+\frac{5}{x} z=5
$$

Thus the integrating factor is $e^{\int \frac{5}{x} d x}=e^{5 \ln x}=x^{5}$ so we have

$$
\frac{d}{d x}\left(x^{5} z\right)=5 x^{5}
$$

$\Rightarrow$

$$
\Rightarrow \quad x^{5} z=5 \frac{x^{6}}{6}+c
$$

Since $z=y^{5} \Rightarrow$

$$
y^{5}=5 \frac{x}{6}+c x^{-5} .
$$

## Exact Differential Equations

Definition: The differential expression

$$
M(x, y) d x+N(x, y) d y
$$

is called exact $\Leftrightarrow \exists$ a function $f(x, y)$ that is differentiable in some region $R$ of the $x, y$-plane, i.e. $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous in $R$ and such that

$$
\frac{\partial f}{\partial x}=M \quad \frac{\partial f}{\partial y}=N \quad \forall(x, y) \in R .
$$

Remark: Since $d f(x, y)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \Rightarrow M d x+N d y$ is exact $\Leftrightarrow d f(x, y)=M d x+N d y$.
Definition: The differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

is called an exact differential equation if the left hand side is an exact differential.

Remark: When the differential equation (1) is exact

$$
\begin{align*}
& \Rightarrow \\
& \qquad d f(x, y)=M d x+N d y=0 \tag{2}
\end{align*}
$$

Using this we may solve the differential equation. For if $y(x)$ is the solution, then (2) may be integrated with respect to $x$ to yield

$$
\begin{equation*}
f(x, y)=c \tag{3}
\end{equation*}
$$

Conversely if (3) defines $y$ as a differential function of $x$, then this $y(x)$ is a solution of the differential equation. For (3) $\Rightarrow$

$$
\frac{d f}{d x}=0=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}
$$

by the chain rule. $\Rightarrow$

$$
M+N \frac{d y}{d x}=0
$$

Example: $x d y+y d x=0$
Here $M=y$ and $N=x$
Consider $f(x, y)=x y$

$$
d f(x, y)=x d y+y d x
$$

Since $f_{x}=y$ and $f_{y}=x$

$$
d f=f_{x} d x+f_{y} d y=y d x+x d y=0
$$

Therefore

$$
f(x, y)=x y=c
$$

determines the solution. $\Rightarrow$

$$
y=\frac{c}{x}
$$

Check $\frac{d y}{d x}=-\frac{c}{x^{2}} \quad d y=-\frac{c}{x^{2}} d x . \Rightarrow x d y+y d x=x\left(-\frac{c}{x^{2}} d x\right)+\frac{c}{x} d x=0$.
Thus if we know that a certain differential equation is exact we can solve it.

Question: When is a differential equation exact? The answer is given by following theorem.
Theorem If $M(x, y)$ and $N(x, y)$ are continuous functions and have continuous partial derivatives in some region $R$ of the $x, y$-plane, then the expression

$$
M(x, y) d x+N(x, y) d y
$$

is an exact differential $\Leftrightarrow$

$$
M_{y}=N_{x}
$$

throughout $R$.
Remark: If $f_{x}=M$ and $f_{y}=N$, then $\Rightarrow f_{x y}=M_{y}=N_{x}=f_{y x}$.
Example: $y d x+x d y$ Here $M=y$ and $N=x$ so that $M_{y}=0=N_{x}$ and we see that this equation is exact.

Example: $e^{x} \cos y d x=e^{x} \sin y d y$
We rewrite the equation as

$$
e^{x} \cos y d x-e^{x} \sin y d y=0 .
$$

Thus
$M=e^{x} \cos y$ and $N=-e^{x} \sin y$ and therefore $M_{y}=-e^{x} \sin y$ and $N_{x}=-e^{x} \sin y$. Therefore this equation is exact. $\Rightarrow \exists f(x, y)$ such that $f_{x}=M f_{y}=N$, i.e.,

$$
\frac{\partial f}{\partial x}=e^{x} \cos y
$$

$\Rightarrow$

$$
f(x, y)=\int e^{x} \cos y d x+g(y)=e^{x} \cos y+g(y)
$$

$g(y)=$ ? We must have

$$
\frac{\partial f}{\partial y}=N=-e^{x} \sin y .
$$

Now

$$
\frac{\partial f}{\partial y}=-e^{x} \sin y+g^{\prime}(y)=-e^{x} \sin y
$$

$\Rightarrow g^{\prime}(y)=0 \Rightarrow g=$ const $=c$ Therefore

$$
f(x, y)=e^{x} \cos y+c
$$

$\Rightarrow$ solution is $f(x, y)=k$, i.e.

$$
e^{x} \cos y=c+k=k^{\prime} .
$$

Example Here is a video slide show example. Slide Example
You will need Real Player to view this. To get it click on Real Player.

## Integrating factors

Recall: $M(x, y) d x+N(x, y) d y=0$ is exact $\Leftrightarrow M_{y}=N_{x}$. When the equation is exact, $\Rightarrow \exists f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$ and $d f=M d x+N d y=0 . \Rightarrow f(x, y)=c$ gives the solution to the equation.

Clearly not every differential equation is exact.
Question: Can we make $M d x+N d y=0$ exact when it is not?
We want to find a function $u(x, y)$ such that when we multiply the differential equation by $u(x, y)$, then

$$
u M d x+u N d y=0
$$

is exact. $u(x, y)$ is called an integrating factor.
Example $y d x+\left(y^{2}-x\right) d y=0$
$M=y \quad N=y^{2}-x$
$M_{y}=1 \quad N_{x}=-1$ Thus the equation is not exact.
We multiply by a function $u$ so that

$$
u y d x+u\left(y^{2}-x\right) d y=0
$$

is exact.

$$
\begin{array}{lrl}
\Rightarrow & {[u y]_{y}} & =\left[u\left(y^{2}-x\right)\right]_{x} \\
\Rightarrow & u_{y} y+u & =u_{x}\left(y^{2}-x\right)-u .
\end{array}
$$

This last equation is harder to solve in general than the original. However, we do not need the general solution. We need any $u$ which when multiplied times the equation makes it exact. If we assume $u_{x}=0$, then $u=u(y)$, i.e. $u$ is only a function of $y$ and our partial differential equation for $u$ becomes the ordinary differential equation

$$
y \frac{d u}{d y}+2 u=0
$$

which has the solution $u=\frac{1}{y^{2}}$. Multiplying the original equation by this $u$ yields

$$
\frac{1}{y} d x+\left(1-\frac{x}{y^{2}}\right) d y=0
$$

Since now $\mathrm{M}=\frac{1}{y}$ and $\mathrm{N}=\left(1-\frac{x}{y^{2}}\right) \Rightarrow \mathrm{M}_{y}=-\frac{1}{y^{2}}=\mathrm{N}_{x} \Rightarrow$ this new equation is exact.

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad f_{x}=\frac{1}{y}
\end{aligned}
$$

$$
f=\frac{x}{y}+g(y) .
$$

Hence

$$
f_{y}=-\frac{x}{y^{2}}+g^{\prime}(y)=-\frac{x}{y^{2}}+1
$$

$\Rightarrow g^{\prime}(y)=1 \Rightarrow g=y+c$
Therefore

$$
f(x, y)=\frac{x}{y}+y+c
$$

and the solution is $\frac{x}{y}+y=k$.
Example $-y d x+x d y=0$
$N=x \quad M=-y \Rightarrow M_{y}=-1$ and $N_{x}=1$ Clearly this equation is not exact.
Multiply by $u$ and get

$$
-u(y) d x+u(x) d y=0
$$

Then
$\mathrm{M}_{y}=u+y u_{y}$ and $\mathrm{N}_{x}=-u-u_{x} x$.

$$
u+y u_{y}=-u-u_{x} x
$$

Setting $u_{y}=0$ yields $u=\frac{1}{x^{2}} \Rightarrow$

$$
-\frac{y}{x^{2}} d x+\frac{1}{x} d y=0
$$

This new equation is exact.

$$
\begin{array}{lc}
\Rightarrow & f_{x}=-\frac{y}{x^{2}} \text { and } f_{y}=-\frac{y}{x^{2}} \\
\Rightarrow & f=\frac{y}{x}+h(x) \\
\Rightarrow & f_{x}=-\frac{y}{x^{2}}+h^{\prime}(x)=-\frac{y}{x^{2}} \\
\Rightarrow & h^{\prime}=0 \\
\Rightarrow & h=c \Rightarrow f=\frac{y}{x}+c
\end{array}
$$

$\Rightarrow$ solution is

$$
\frac{y}{x}=k
$$

