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Sturm-Liouville Problems

We shall now develop some results that will be useful in our study of partial differential equations. First
we define a self-adjoint operator

Ly  pxy    qxy
where px,p x, and qx are continuous and px  0 in some interval a  x  b.

Remark: Self-adjoint operators have special properties. Every second order linear operator can be put in
self-adjoint form by multiplying it by a suitable factor. Consider

My  y   Rxy   Qxy
Multiplying My by

e Rxdx

leads to

e RxdxMy  y e Rxdx  Re Rxdxy   Qe Rxdxy

 e Rxdxy 


 Qe Rxdxy

If we let px  e Rxdx and qx  Qe Rxdx, we see that e RxdxM has the form of Ly above. In
particular, the differential equation My  0 may be rewritten as the self-adjoint differential equation
Ly  0.

We now consider the eigenvalue problem with unmixed boundary conditions
Ly  wxy  0 a  x  b

1ya  1y a  0 1
2  1

2  0
2yb  2y b  0 2

2  2
2  0

    

where wx  0 is a continuous function and wx is not identically zero on a,b.  is called a
Sturm-Liouville problem.  is a parameter independent of x. Note that the solution y  0 exists for all
values of the parameter . It may be shown that nontrivial solutions exist for certain values of  and not
for other values of . If a nontrivial solution exists for a value    i, then this value is called an
eigenvalue of the operator L (relevant to the boundary conditions) and the corresponding nontrivial
solution yix is called an eigenfunction.

Definition: The inner product of two continuous functions fx and gx in the interval a,b with
respect to the weight function wx is defined by

 f,g w  
a

b
fxgxwxdx

(Here again we assume wx  0 on a,b and wx is not identically zero in a,b. )
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The inner product  f,g w has the following properties:
 f, f w  0
 f, f w  0  f  0
 f,g w  g, f w
 f  g,h w    f,h w    g,h w , constants

Definition. Two functions f and g are said to be orthogonal on a,b with respect to the weight function
wx if

 f,g w  0.

Example. Let wx  1, then


0


sinxcosxdx  sin2x

2 |0  0

Therefore sinx and cosx are orthogonal on 0, with respect to the weight function 1.

Definition. The set of continuous functions f1, f2, . . .  is called an orthogonal set on a,b with respect
to the weight function wx if

 fm, fn w  0 m  n.

Example. 1, cos xL , cos 2x
L , . . . , cos nxL , . . . is an orthogonal set on 0,L with respect to the

weight function w  1. For m  n we have

 cos mxL , cos nxL  
0

L
cos mxL cos nxL dx  L m sinmcosn  ncosm sinn

m2  n2
 0

Remark. For vectors we have the following: if u  u1, . . . ,un then the length of
u  u  ui2

1
2  u  u . Motivated by this we have the following definition.

Definition. Let fx be a continuous function on a  x  b. Then the norm of f with respect to the
weight function wx is defined by

fw   f, f w  
a

b
f2xwxdx .

Example. 0  x  1,wx  1

x22  x2,x2  
0

1
x4dx  x5

5 |01  1
5



x2  1
5

.
Remark. Let y  x2

x2
 x2

5
 y  x2

5
 1.
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Definition. If fw  1, then f is said to be normalized.

Definition. A set of functions 1,2, . . .  defined on a,b is called orthonormal if
(1) the set is orthogonal on a.b, and
(2) each function has norm 1 with respect to the weight function wx. Therefore 1,2, . . .  is an
orthonormal set 

  i, j w  ij 
0 i  j
1 i  j

Example. sinnx  sinx, sin 2x, sin 3x, . . .  on 0, is an orthogonal set with respect to the weight
function wx  1 since

 sinmx, sinnx 1  
0


sinmx sinnxdx

 1
2 0


cosm  nx  cosm  nxdx m  n

 1
2

sinm  nx
m  n  sinm  nx

m  n
0



 1
2

sinm  n
m  n  sinm  n

m  n  0

since m and n are integers.
Now

 sinnx, sinnx 1  
0


sin2nxdx

 1
2 0


1  cos2nxdx

 1
2 x  sin 2nx

2n |0  
2 .

Therefore

sinnx1   sinnx, sinnx 1  
2

 this set is not orthonormal. We can make an orthonormal set from these functions by dividing each
element in the original set by 

2  2
 sinnx is orthonormal set n  1,2, . . . .

We now present some results related to the eigenvalues and eigenfunctions of the self-adjoint BVP .

Theorem 1: Eigenfunctions of  corresponding to distinct eigenvalues are orthogonal with respect to
the weight function wx on a,b.

Remark: Theorem 1 may be extended to cover a number of cases which are important in applications.

1. Periodic Boundary Conditions:

Consider the BVP  with the boundary conditions replaced by the periodic (mixed) boundary
conditions
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ya  yb y a  y b
If we also assume that pa  pb, then Theorem 1 holds for this case also.

2. Singular End Points:

If in the Sturm-Liouville problem  we have pa  0, then we require that the solution yx be
bounded at x  a. Theorem 1 will then hold. Thus the requirement that ya be finite replaces the first
boundary condition in  at x  a. Similar remarks hold if pb  0. If both pa  0 and pb  0,
then both boundary conditions in  can be omitted and replaced by the requirements that the solution
yx be bounded at x  a and x  b, and the conclusion of Theorem 1 still holds.

Fourier Series
Definition: A set of orthogonal functions nx on an interval a,b with respect to the weight
function wx is called complete if


a

b
wxfxnxdx  0 n  1,2,3,

implies that f  0 on a,b.
Theorem 2: If fx is any continuous function on a,b, then fx can be expanded at point in a  x  b
in a uniformly convergent Fourier series as

fx 
n1



annx

where

an 
 f,n w
 n, n w 


a

b
wxfxnxdx


a

b
wxn2xdx

n  1,2,     1

Here the set of functions n is a complete, orthogonal set.

Proof: We shall establish the formula for an. Now

 k, fx w  k,
1



ann w

  k,a11  a22  w
 a1  k,1 w  a2  k,2 w   ak  k,k w  ak1  k,k1 w 

But  k,j w  0 if j  k, since the set k is orthogonal.



 k, fx w  ak  k,k w  akkw
2

This is 1. 1 is the formula for the coefficients in the expansion of a function fx in terms of a set
of orthogonal functions.
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Ordinary Fourier Series

Fourier Sine Series

Consider the eigenvalue problem
D.E. y   y  0 0  x  L B.C. y0  yL  0   0

We shall first solve this problem. Now the general solution to the DE is

y  c1 sin  x  c2 cos  x.

y0  0  y  c1  0  c2  0  c2  0
yL  0  c1 sin  L  0  c1  0 or sin  L  0
sin  L  0   L  n n  1,2, . . .



n  n22

L2

are the eigenvalues, whereas the eigenfunctions are

sin n x  sin nL x  n

an orthogonal set.
To make sin nxL orthonormal set we divide each function by sin nxL  L

2 . Therefore
2
L sin 2x

L is an orthonormal set.

Hence if

fx 
1



k sin kxL

then from 1 above

k  2
L 0

L
fx sin kxL dx,

since


0

L
kx2dx  

0

L
sin2 n

L xdx  L
2 .

These formulas are for the Fourier sine series for fx on 0  x  L.
Remarks. 1. At x  0 and x  L k sin kxL gives 0 for fx. Therefore unless f0  fL  0
the Fourier series is not good at the end points.

2. Since sin kL x  2L  sin k
L x  2k  sin kxL , we see that the Fourier series yields

fx  2L  fx  Fourier series has period 2L. For L  x  0
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we have
1



k sin kxL  
1



k sin kx
L

 
1



k sin kxL  L  x  0  L  x  0

 fx, where fx is value of series in 0  x  L.

Therefore the Fourier sine series converges to function Fx where

Fx 
fx 0  x  L

fx  L  x  0
Fx  2L  Fx

This is the odd periodic extension of fx with period 2L. Unless fkL  0 Fx will be
discontinuous at L, 2L, . . . Note that the function fx is given on 0,L only, whereas the Fourier
Sine series extends it to a function Fx which is defined on   x  .

Suppose that the graph of the function fx is given by the figure below.

Then the Fourier sine series generates a function Fx defined on -  x   whose graph is given
below.
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Example Find the Fourier sine series of

fx 
1 0  x  

2

0 
2  x  

Now

fx  n sin nxL 
1



n sinnx,

since 2L  2  L  .
The formula above for the coefficients in the Fourier sine series implies

n  2
L 0

L
fx sin nxL dx  2

 0


fx sinnxdx
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n  2
 0


2 1  sinnxdx  2

  
2


0  sinnxdx   2


cosnx
n |0


2

  2
n cos n2  1

n 
2
n n odd
2
n 1

n
2  1 n even

Therefore

fx 
1



n sinnx

 2
 sinx  2

2 sin 2x  1
3 sin 3x  0  sin 4x  1

5 sin 5x  2
6 sin 6x 

Note that our function fx on 0  x   is extended to the following on   x  .

What we have done with sine functions can be done with cosine functions.

Fourier Cosine Series.

This comes from eigenvalue problem
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D.E. y   y  0 B.C. y 0  y L  0

n  n22

L2

are the eigenvalues and
n  cos 2x

L
are the eigenfunctions, n  0,1,2, . . . .

Note 0  0  0  1 which is an eigenfunction. Now we want to write

fx  0 
1



n cos nxL

Proceeding as above in our derivation of the constants in the Fourier Sine series, we get for the
constants in the Fourier Cosine series

n  2
L 0

L
fxcos nxL dx 0  1

L 0

L
fxdx

To see where the formula for 0 comes from note
 0, fx 1  0,00 1  1,1 1 0

 0 


0

L
1  fxdx


0

L
12dx

 1
L 0

L
fxdx.

Again the Fourier series is periodic with period 2L. However, now fx  fx since cosine is an even
function. Here the Fourier Cosine series extends fx which is given on 0,L to a function Fx which
is defined on   x   as

Fx 
fx 0  x  L
fx  L  x  0

Fx  2L  Fx.

9



Example. Find the Fourier Cosine series for fx  1, 0  x  4
L  4

fx  0 
1



n cos nx4 0  1
4 0

4
fxdx  1

4 0

4
1  dx  1

k  2
4 0

4
1  cos nx4 dx  1

2

sin nx4
n
4 0

4

 2
4n sin 0  0

Therefore fx  1 is its own Fourier Cosine series. The function is simply extended.
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Full Fourier Sine and Cosine Series

This comes from the eigenvalue problem
D.E. y   y  0 B.C.y0  y2L y 0  y 2L 0  x  2L

The eigenvalues are

n  n22

L2

n  0,1,2, . . . , , whereas the eigenfunctions are

n  an cos nxL  bn sin 2x
L n  0,1,2, . .

.
Note that for this problem the function fx is given on 0,2L since the eigenvalue problem is given on
this interval. This is a different interval than that for Fourier Sine and Fourier Cosine series.



fx  a0 
n1



an cos nxL  bn sin nxL

where

a0  1
2L 0

2L
fxdx, an  1

L 0

2L
fxcos nxL dx bn  1

L 0

2L
fx sin nxL dx

Example Find full Fourier series for

fx 
1 0  x  

2

0 
2  x  

2L    L  
2
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a0  1
 0


fxdx  1

 0


2 1  dx  1

2

an  1

2


0


fxcos nx

2
dx  2

 0


2 1  cos2nx dx  2

 0


2 cos2nx dx  2


sin 2nx

2n |0

2  0

bn  2
 0


2 sin 2nxdx   2


cos2nx

2n |0

2  1

n cosn  cos0 n  1,2, . . .

bn   1
n 1n  1 

 2
n n odd

0 n even

fx  1
2  2

 sin 2x  1
3 sin 6x  1

5 sin 10x 

Fourier-Bessel Series

An important boundary value problem involving Bessel’s equation is
x2y   xy   2x2  n2y  0 0  x  c

yc  0 y0 is finite
where n is a nonnegative integer. The differential equation can be put in the self-adjoint form

xy    2x2  n2
x y  0

This is a special case of the Sturm-Liouville problem  with px  x and the weight function
wx  x. Since p0  0, no boundary condition is required at x  0; the condition that y0 be finite
can be considered as a hidden boundary condition.

The general solution of the differential equation can be written in terms of the Bessel functions of order
n of the first and second kind, namely,

y  AJnx  BYnx

Since Ynx is unbounded at the origin, we set B  0. Also, we have
yc  Jnc  0

If we let  i, i  1,2, denote the positive roots of Jn  0, then the eigenvalues are
c   i or    i 

 i
c i  1,2,

with corresponding eigenfunctions
Jn ix i  1,2,

The set of functions Jn ix for a fixed n form a complete, orthogonal set on 0,c with respect to the
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weight function x. Therefore, from the expression that we derived above for the coefficients in a
Fourier expansion in terms of orthogonal functions we have

fx 
i1



aiJn ix

where the coefficients ai are given by

ai 


0

c
xJn ixfxdx


0

c
xJn ix2dx

i  1,2,

It can be shown that


0

c
xJn ix2dx  c2

2 Jn1 ic2

so that

ai 
2 

0

c
xJn ixfxdx

c2Jn1 ic2 i  1,2,

Example: Expand the function fx  1 into a Fourier-Bessel series of the zeroth order in 0  x  1.

Solution: The coefficients ai are given by

ai 
2 

0

1
xJ0 ixdx

J1 ic2 i  1,2,

where the  i are the roots of J0 i  0. Since
d
dx xJxx  xJ0x

then


0

x
tJ0tdt  xJ1x

Letting  ix  t we have


0

1
xJ0 ixdx  

0

i t
 i
J0t dt i

 1
 i2
 iJ1 i 

J1 i
 i

Thus
ai  2

 iJ1 i

so that

fx  2
i1

 J0 ix
 iJ1 i
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