Ma 530

Sturm-Liouville Problems

We shall now develop some results that will be useful in our study of partial differential equations. First we define a self-adjoint operator

$$
L(y)=\left[p(x) y^{\prime}\right]^{\prime}+q(x) y
$$

where $p(x), p^{\prime}(x)$, and $q(x)$ are continuous and $p(x) \neq 0$ in some interval $a \leq x \leq b$.
Remark: Self-adjoint operators have special properties. Every second order linear operator can be put in self-adjoint form by multiplying it by a suitable factor. Consider

$$
M(y)=y^{\prime \prime}+R(x) y^{\prime}+Q(x) y
$$

Multiplying $M(y)$ by

$$
e^{\int R(x) d x}
$$

leads to

$$
\begin{aligned}
e^{\int R(x) d x} M(y) & =y^{\prime \prime} e^{\int R(x) d x}+R e^{\int R(x) d x} y^{\prime}+Q e^{\int R(x) d x} y \\
& =\left(e^{\int R(x) d x} y^{\prime}\right)^{\prime}+Q e^{\int R(x) d x} y
\end{aligned}
$$

If we let $p(x)=e^{\int R(x) d x}$ and $q(x)=Q e^{\int R(x) d x}$, we see that $e^{\int R(x) d x} M$ has the form of $L(y)$ above. In particular, the differential equation $M(y)=0$ may be rewritten as the self-adjoint differential equation $L(y)=0$.

We now consider the eigenvalue problem with unmixed boundary conditions

$$
\begin{array}{rl}
L(y)+\lambda w(x) y=0 & a \leq x \leq b \tag{*}\\
\alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0 & \alpha_{1}^{2}+\beta_{1}^{2} \neq 0 \\
\alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0 & \alpha_{2}^{2}+\beta_{2}^{2} \neq 0
\end{array}
$$

where $w(x) \geq 0$ is a continuous function and $w(x)$ is not identically zero on $[a, b]$. (*) is called a Sturm-Liouville problem. λ is a parameter independent of x. Note that the solution $y \equiv 0$ exists for all values of the parameter λ. It may be shown that nontrivial solutions exist for certain values of λ and not for other values of λ. If a nontrivial solution exists for a value $\lambda=\lambda_{i}$, then this value is called an eigenvalue of the operator L (relevant to the boundary conditions) and the corresponding nontrivial solution $y_{i}(x)$ is called an eigenfunction.

Definition: The inner product of two continuous functions $f(x)$ and $g(x)$ in the interval $[a, b]$ with respect to the weight function $w(x)$ is defined by

$$
<f, g>_{w}=\int_{a}^{b} f(x) g(x) w(x) d x
$$

(Here again we assume $w(x) \geq 0$ on $[a, b]$ and $w(x)$ is not identically zero in $[a, b]$.)

The inner product $<f, g>_{w}$ has the following properties:

$$
\begin{aligned}
& <f, f>_{w}>0 \\
& <f, f>_{w}=0 \quad \Leftrightarrow f=0 \\
& <f, g>_{w}=<g, f>_{w} \\
& \left\langle\alpha f+\beta g, h>_{w}=\alpha<f, h>_{w}+\beta<g, h>_{w} \quad \alpha, \beta\right. \text { constants }
\end{aligned}
$$

Definition. Two functions f and g are said to be orthogonal on $[a, b]$ with respect to the weight function $w(x)$ if

$$
<f, g>_{w}=0 .
$$

Example. Let $w(x)=1$, then

$$
\int_{0}^{\pi} \sin x \cos x d x=\left.\frac{\sin ^{2} x}{2}\right|_{0} ^{\pi}=0
$$

Therefore $\sin x$ and $\cos x$ are orthogonal on $[0, \pi]$ with respect to the weight function 1 .
Definition. The set of continuous functions $\left\{f_{1}, f_{2}, \ldots\right\}$ is called an orthogonal set on $[a, b]$ with respect to the weight function $w(x)$ if

$$
\left.<f_{m}, f_{n}\right\rangle_{w}=0 \quad m \neq n .
$$

Example. $\left\{1, \cos \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \ldots, \cos \frac{n \pi x}{L}, \ldots\right\}$ is an orthogonal set on $[0, L]$ with respect to the weight function $w=1$. For $m \neq n$ we have

$$
<\cos \frac{m \pi x}{L}, \cos \frac{n \pi x}{L}>=\int_{0}^{L} \cos \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x=L\left[\frac{m \sin \pi m \cos \pi n-n \cos \pi m \sin \pi n}{\pi\left(m^{2}-n^{2}\right)}\right]=0
$$

Remark. For vectors we have the following: if $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ then the length of $\vec{u}=\|\vec{u}\|=\left(\sum u_{i}^{2}\right)^{\frac{1}{2}}=\sqrt{\vec{u} \cdot \vec{u}}$. Motivated by this we have the following definition.

Definition. Let $f(x)$ be a continuous function on $a \leq x \leq b$. Then the norm of f with respect to the weight function $w(x)$ is defined by

$$
\|f\|_{w}=\sqrt{\langle f, f\rangle_{w}}=\sqrt{\int_{a}^{b} f^{2}(x) w(x) d x} .
$$

Example. $0 \leq x \leq 1, w(x)=1$

$$
\begin{gathered}
\left\|x^{2}\right\|^{2}=<x^{2}, x^{2}>=\int_{0}^{1} x^{4} d x=\left.\frac{x^{5}}{5}\right|_{0} ^{1}=\frac{1}{5} \\
\Rightarrow \quad\left\|x^{2}\right\|=\frac{1}{\sqrt{5}}
\end{gathered}
$$

Remark. Let $y=\frac{x^{2}}{\left\|x^{2}\right\|}=\frac{x^{2}}{\sqrt{5}} \Rightarrow\|y\|=\frac{\left\|x^{2}\right\|}{\sqrt{5}}=1$.

Definition. If $\|f\|_{w}=1$, then f is said to be normalized.
Definition. A set of functions $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ defined on $[a, b]$ is called orthonormal if
(1) the set is orthogonal on [a.b], and
(2) each function has norm 1 with respect to the weight function $w(x)$. Therefore $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ is an orthonormal set \Leftrightarrow

$$
<\phi_{i}, \phi_{j}>_{w}=\delta_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

Example. $\{\sin (n x)\}=\{\sin x, \sin 2 x, \sin 3 x, \ldots\}$ on $[0, \pi]$ is an orthogonal set with respect to the weight function $w(x)=1$ since

$$
\begin{aligned}
& <\sin (m x), \sin (n x)>_{1}=\int_{0}^{\pi} \sin m x \sin n x d x \\
& =\frac{1}{2} \int_{0}^{\pi}[\cos (m-n) x-\cos (m+n) x] d x \quad m \neq n \\
& =\frac{1}{2}\left[\frac{\sin (m-n) x}{m-n}-\frac{\sin (m+n) x}{m-n}\right]_{0}^{\pi}=\frac{1}{2}\left[\frac{\sin (m-n) \pi}{m-n}-\frac{\sin (m+n) \pi}{m+n}\right]=0
\end{aligned}
$$

since m and n are integers.
Now

$$
\begin{aligned}
& <\sin n x, \sin n x>_{1}=\int_{0}^{\pi} \sin ^{2} n x d x \\
& =\frac{1}{2} \int_{0}^{\pi}(1-\cos 2 n x) d x \\
& =\left.\frac{1}{2}\left(x-\frac{\sin 2 n x}{2 n}\right)\right|_{0} ^{\pi}=\frac{\pi}{2} .
\end{aligned}
$$

Therefore

$$
\|\sin n x\|_{1}=\sqrt{<\sin n x, \sin n x>_{1}}=\sqrt{\frac{\pi}{2}}
$$

\Rightarrow this set is not orthonormal. We can make an orthonormal set from these functions by dividing each element in the original set by $\sqrt{\frac{\pi}{2}} \Rightarrow\left\{\sqrt{\frac{2}{\pi}} \sin n x\right\}$ is orthonormal set $(n=1,2, \ldots)$.
We now present some results related to the eigenvalues and eigenfunctions of the self-adjoint BVP (*).

Theorem 1: Eigenfunctions of ($*$) corresponding to distinct eigenvalues are orthogonal with respect to the weight function $w(x)$ on $[a, b]$.

Remark: Theorem 1 may be extended to cover a number of cases which are important in applications.

1. Periodic Boundary Conditions:

Consider the BVP (*) with the boundary conditions replaced by the periodic (mixed) boundary conditions

$$
y(a)=y(b) \quad y^{\prime}(a)=y^{\prime}(b)
$$

If we also assume that $p(a)=p(b)$, then Theorem 1 holds for this case also.

2. Singular End Points:

If in the Sturm-Liouville problem $(*)$ we have $p(a)=0$, then we require that the solution $y(x)$ be bounded at $x=a$. Theorem 1 will then hold. Thus the requirement that $y(a)$ be finite replaces the first boundary condition in $(*)$ at $x=a$. Similar remarks hold if $p(b)=0$. If both $p(a)=0$ and $p(b)=0$, then both boundary conditions in $(*)$ can be omitted and replaced by the requirements that the solution $y(x)$ be bounded at $x=a$ and $x=b$, and the conclusion of Theorem 1 still holds.

Fourier Series

Definition: A set of orthogonal functions $\left\{\psi_{n}(x)\right\}$ on an interval $[a, b]$ with respect to the weight function $w(x)$ is called complete if

$$
\int_{a}^{b} w(x) f(x) \psi_{n}(x) d x=0 \quad n=1,2,3, \ldots
$$

implies that $f=0$ on $[a, b]$.
Theorem 2: If $f(x)$ is any continuous function on $[a, b]$, then $f(x)$ can be expanded at point in $a<x<b$ in a uniformly convergent Fourier series as

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \psi_{n}(x)
$$

where

$$
\begin{equation*}
a_{n}=\frac{<f, \psi_{n}>_{w}}{<\psi_{n}, \psi_{n}>_{w}}=\frac{\int_{a}^{b} w(x) f(x) \psi_{n}(x) d x}{\int_{a}^{b} w(x) \psi_{n}^{2}(x) d x} \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

Here the set of functions $\left\{\psi_{n}\right\}$ is a complete, orthogonal set.

Proof: We shall establish the formula for a_{n}. Now

$$
\begin{aligned}
& <\psi_{k}, f(x)>_{w}=<\psi_{k}, \sum_{1}^{\infty} a_{n} \psi_{n}>_{w} \\
& =<\psi_{k}, a_{1} \psi_{1}+a_{2} \psi_{2}+\cdots>_{w} \\
& =a_{1}<\psi_{k}, \psi_{1}>_{w}+a_{2}<\psi_{k}, \psi_{2}>_{w}+\cdots+a_{k}<\psi_{k}, \psi_{k}>_{w}+a_{k+1}<\psi_{k}, \psi_{k+1}>_{w}+\cdots
\end{aligned}
$$

But $<\psi_{k}, \psi_{j}>_{w}=0$ if $j \neq k$, since the set $\left\{\psi_{k}\right\}$ is orthogonal.
\Rightarrow

$$
<\psi_{k}, f(x)>_{w}=a_{k}<\psi_{k}, \psi_{k}>_{w}=a_{k}\left\|\psi_{k}\right\|_{w}^{2}
$$

This is (1). (1) is the formula for the coefficients in the expansion of a function $f(x)$ in terms of a set of orthogonal functions.

Ordinary Fourier Series

Fourier Sine Series

Consider the eigenvalue problem

$$
\begin{array}{llll}
\text { D.E. } y^{\prime \prime}+\lambda y=0 & 0 \leq x \leq L & \text { B.C. } y(0)=y(L)=0 & \lambda>0
\end{array}
$$

We shall first solve this problem. Now the general solution to the DE is

$$
y=c_{1} \sin \sqrt{\lambda} x+c_{2} \cos \sqrt{\lambda} x .
$$

$$
y(0)=0 \Rightarrow y=c_{1} \cdot 0+c_{2}=0 \Rightarrow c_{2}=0
$$

$$
y(L)=0 \Rightarrow c_{1} \sin \sqrt{\lambda} L=0 \Rightarrow c_{1}=0 \text { or } \sin \sqrt{\lambda} L=0
$$

$$
\sin \sqrt{\lambda} L=0 \Rightarrow \sqrt{\lambda} L=n \pi \quad n=1,2, \ldots
$$

\Rightarrow

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

are the eigenvalues, whereas the eigenfunctions are

$$
\sin \sqrt{\lambda_{n}} x=\sin \frac{n \pi}{L} x=\psi_{n}
$$

an orthogonal set.
To make $\left\{\sin \frac{n \pi x}{L}\right\}$ orthonormal set we divide each function by $\left\|\sin \frac{n \pi x}{L}\right\|=\sqrt{\frac{L}{2}}$. Therefore $\left\{\sqrt{\frac{2}{L}} \sin \frac{2 \pi x}{L}\right\}$ is an orthonormal set.

Hence if

$$
f(x)=\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi x}{L}
$$

then from (1) above

$$
\alpha_{k}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x
$$

since

$$
\int_{0}^{L}\left[\psi_{k}(x)\right]^{2} d x=\int_{0}^{L} \sin ^{2}\left(\frac{n \pi}{L}\right) x d x=\frac{L}{2} .
$$

These formulas are for the Fourier sine series for $f(x)$ on $0<x<L$.
Remarks. 1. At $x=0$ and $x=L \quad \sum \alpha_{k} \sin \frac{k \pi x}{L}$ gives 0 for $f(x)$. Therefore unless $f(0)=f(L)=0$ the Fourier series is not good at the end points.
2. Since $\sin \frac{k \pi}{L}(x+2 L)=\sin \left(\frac{k \pi}{L} x+2 k \pi\right)=\sin \frac{k \pi x}{L}$, we see that the Fourier series yields $f(x+2 L)=f(x) \Rightarrow$ Fourier series has period $2 L$. For $-L<x<0$
we have $\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi x}{L}=\sum_{1}^{\infty} \alpha_{k} \sin \left(\frac{-k \pi(-x)}{L}\right)$

$$
\begin{aligned}
& =-\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi(-x)}{L} \quad-L<x<0 \Rightarrow L>-x>0 \\
& =-f(-x), \text { where } f(x) \text { is value of series in } 0<x<L .
\end{aligned}
$$

Therefore the Fourier sine series converges to function $F(x)$ where

$$
F(x)=\left\{\begin{array}{rll}
f(x) & 0<x<L \\
-f(-x) & -L<x<0
\end{array} \quad F(x+2 L)=F(x)\right.
$$

This is the odd periodic extension of $f(x)$ with period $2 L$. Unless $f(\pm k L)=0 \quad F(x)$ will be discontinuous at $\pm L, \pm 2 L, \ldots$. Note that the function $f(x)$ is given on $[0, L]$ only, whereas the Fourier Sine series extends it to a function $F(x)$ which is defined on $-\infty<x<\infty$.

Suppose that the graph of the function $f(x)$ is given by the figure below.

Then the Fourier sine series generates a function $F(x)$ defined on $-\infty<x<\infty$ whose graph is given below.

Example Find the Fourier sine series of

$$
f(x)= \begin{cases}1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{cases}
$$

Now

$$
f(x)=\sum \alpha_{n} \sin \frac{n \pi x}{L}=\sum_{1}^{\infty} \alpha_{n} \sin n x,
$$

since $2 L=2 \pi \Rightarrow L=\pi$.
The formula above for the coefficients in the Fourier sine series implies

$$
\alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

$$
\begin{aligned}
\alpha_{n} & =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot \sin n x d x+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} 0 \cdot \sin n x d x=-\left.\frac{2}{\pi} \frac{\cos n x}{n}\right|_{0} ^{\frac{\pi}{2}} \\
& =-\frac{2}{\pi n}\left[\cos \frac{n \pi}{2}-1\right]
\end{aligned}
$$

$$
\alpha_{n}=\left\{\begin{array}{cc}
\frac{2}{\pi n} & n \text { odd } \\
\left(\frac{-2}{\pi n}\right)\left[(-1)^{\frac{n}{2}}-1\right] & n \text { even }
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
f(x) & =\sum_{1}^{\infty} \alpha_{n} \sin n x \\
& =\frac{2}{\pi}\left[\sin x+\frac{2}{2} \sin 2 x+\frac{1}{3} \sin 3 x+0 \cdot \sin 4 x+\frac{1}{5} \sin 5 x+\frac{2}{6} \sin 6 x+\cdots\right]
\end{aligned}
$$

Note that our function $f(x)$ on $0 \leq x \leq \pi$ is extended to the following on $-\infty<x<\infty$.

What we have done with sine functions can be done with cosine functions.

Fourier Cosine Series.

This comes from eigenvalue problem

$$
\begin{gathered}
\text { D.E. } y^{\prime \prime}+\lambda y=0 \quad \text { B.C. } y^{\prime}(0)=y^{\prime}(L)=0 \\
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
\end{gathered}
$$

are the eigenvalues and

$$
\psi_{n}=\cos \frac{2 \pi x}{L}
$$

are the eigenfunctions, $n=0,1,2, \ldots$.

Note $\lambda_{0}=0 \Rightarrow \psi_{0}=1$ which is an eigenfunction. Now we want to write

$$
f(x)=\beta_{0}+\sum_{1}^{\infty} \beta_{n} \cos \frac{n \pi x}{L}
$$

Proceeding as above in our derivation of the constants in the Fourier Sine series, we get for the constants in the Fourier Cosine series

$$
\beta_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \quad \beta_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

To see where the formula for β_{0} comes from note

$$
\begin{aligned}
& <\psi_{0}, f(x)>_{1}=<\psi_{0}, \beta_{0} \psi_{0}>_{1}=<1,1>_{1} \beta_{0} \\
\Rightarrow & \beta_{0}=\frac{\int_{0}^{L} 1 \cdot f(x) d x}{\int_{0}^{L} 1^{2} d x}=\frac{1}{L} \int_{0}^{L} f(x) d x .
\end{aligned}
$$

Again the Fourier series is periodic with period $2 L$. However, now $f(-x)=f(x)$ since cosine is an even function. Here the Fourier Cosine series extends $f(x)$ which is given on $[0, L]$ to a function $F(x)$ which is defined on $-\infty<x<\infty$ as

$$
F(x)=\left\{\begin{array}{l}
f(x) \quad 0<x<L \\
f(-x)-L<x<0
\end{array} \quad F(x+2 L)=F(x)\right.
$$

Example. Find the Fourier Cosine series for $f(x)=1, \quad 0<x<4$

$$
\begin{aligned}
& L=4 \\
& f(x)=\beta_{0}+\sum_{1}^{\infty} \beta_{n} \cos \frac{n \pi x}{4} \quad \beta_{0}=\frac{1}{4} \int_{0}^{4} f(x) d x=\frac{1}{4} \int_{0}^{4} 1 \cdot d x=1 \\
& \beta_{k}=\frac{2}{4} \int_{0}^{4} 1 \cdot \cos \frac{n \pi x}{4} d x=\frac{1}{2}\left[\frac{\sin \frac{n \pi x}{4}}{\frac{n \pi}{4}}\right]_{0}^{4}=\frac{2}{4 \pi n}[\sin 0]=0
\end{aligned}
$$

Therefore $f(x)=1$ is its own Fourier Cosine series. The function is simply extended.

Full Fourier Sine and Cosine Series

This comes from the eigenvalue problem

$$
\text { D.E. } y^{\prime \prime}+\lambda y=0 \quad \text { B.C. } y(0)=y(2 L) \quad y^{\prime}(0)=y^{\prime}(2 L) \quad 0 \leq x \leq 2 L
$$

The eigenvalues are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

$n=0,1,2, \ldots$, , whereas the eigenfunctions are

$$
\psi_{n}=a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{2 \pi x}{L} \quad n=0,1,2, . .
$$

Note that for this problem the function $f(x)$ is given on $[0,2 L]$ since the eigenvalue problem is given on this interval. This is a different interval than that for Fourier Sine and Fourier Cosine series.
\Rightarrow

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

where

$$
a_{0}=\frac{1}{2 L} \int_{0}^{2 L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \cos \frac{n \pi x}{L} d x \quad b_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \sin \frac{n \pi x}{L} d x
$$

Example Find full Fourier series for

$$
f(x)= \begin{cases}1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{cases}
$$

$$
2 L=\pi \Rightarrow L=\frac{\pi}{2}
$$

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot d x=\frac{1}{2} \\
a_{n}=\frac{1}{\frac{\pi}{2}} \int_{0}^{\pi} f(x) \cos \frac{n \pi x}{\frac{\pi}{2}} d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot \cos 2 n x d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos 2 n x d x=\left.\frac{2}{\pi} \frac{\sin 2 n x}{2 n}\right|_{0} ^{\frac{\pi}{2}}=0 \\
b_{n}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin 2 n x d x=-\left.\frac{2}{\pi} \frac{\cos 2 n x}{2 n}\right|_{0} ^{\frac{\pi}{2}}=\frac{1}{\pi n}[\cos n \pi-\cos 0] \quad n=1,2, \ldots \\
b_{n}=-\frac{1}{\pi n}\left[(-1)^{n}-1\right]= \begin{cases}+\frac{2}{\pi n} & n \text { odd } \\
0 & n \text { even }\end{cases} \\
f(x)=\frac{1}{2}+\frac{2}{\pi}\left[\sin 2 x+\frac{1}{3} \sin 6 x+\frac{1}{5} \sin 10 x+\cdots\right]
\end{gathered}
$$

Fourier-Bessel Series

An important boundary value problem involving Bessel's equation is

$$
\begin{array}{rlrl}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-n^{2}\right) y & =0 & 0 \leq x \leq c \\
y(c) & =0 & y(0) \text { is finite }
\end{array}
$$

where n is a nonnegative integer. The differential equation can be put in the self-adjoint form

$$
\left(x y^{\prime}\right)^{\prime}+\frac{\left(\lambda^{2} x^{2}-n^{2}\right)}{x} y=0
$$

This is a special case of the Sturm-Liouville problem $(*)$ with $p(x)=x$ and the weight function $w(x)=x$. Since $p(0)=0$, no boundary condition is required at $x=0$; the condition that $y(0)$ be finite can be considered as a hidden boundary condition.

The general solution of the differential equation can be written in terms of the Bessel functions of order n of the first and second kind, namely,

$$
y=A J_{n}(\lambda x)+B Y_{n}(\lambda x)
$$

Since $Y_{n}(x)$ is unbounded at the origin, we set $B=0$. Also, we have

$$
y(c)=J_{n}(\lambda c)=0
$$

If we let $\alpha_{i}, i=1,2, \ldots$ denote the positive roots of $J_{n}(\alpha)=0$, then the eigenvalues are

$$
\lambda c=\alpha_{i} \text { or } \lambda=\lambda_{i}=\frac{\alpha_{i}}{c} i=1,2, \ldots
$$

with corresponding eigenfunctions

$$
J_{n}\left(\lambda_{i} x\right) \quad i=1,2, \ldots
$$

The set of functions $\left\{J_{n}\left(\lambda_{i} x\right)\right\}$ for a fixed n form a complete, orthogonal set on $[0, c]$ with respect to the
weight function x. Therefore, from the expression that we derived above for the coefficients in a Fourier expansion in terms of orthogonal functions we have

$$
f(x)=\sum_{i=1}^{\infty} a_{i} J_{n}\left(\lambda_{i} x\right)
$$

where the coefficients a_{i} are given by

$$
a_{i}=\frac{\int_{0}^{c} x J_{n}\left(\lambda_{i} x\right) f(x) d x}{\int_{0}^{c} x\left[J_{n}\left(\lambda_{i} x\right)\right]^{2} d x} \quad i=1,2, \ldots
$$

It can be shown that

$$
\int_{0}^{c} x\left[J_{n}\left(\lambda_{i} x\right)\right]^{2} d x=\frac{c^{2}}{2}\left[J_{n+1}\left(\lambda_{i} c\right)\right]^{2}
$$

so that

$$
a_{i}=\frac{2 \int_{0}^{c} x J_{n}\left(\lambda_{i} x\right) f(x) d x}{c^{2}\left[J_{n+1}\left(\lambda_{i} c\right)\right]^{2}} \quad i=1,2, \ldots
$$

Example: Expand the function $f(x)=1$ into a Fourier-Bessel series of the zeroth order in $0<x<1$.
Solution: The coefficients a_{i} are given by

$$
a_{i}=\frac{2 \int_{0}^{1} x J_{0}\left(\lambda_{i} x\right) d x}{\left[J_{1}\left(\lambda_{i} c\right)\right]^{2}} \quad i=1,2, \ldots
$$

where the λ_{i} are the roots of $J_{0}\left(\lambda_{i}\right)=0$. Since

$$
\frac{d}{d x}\left[x J_{x}(x)\right]=x J_{0}(x)
$$

then

$$
\int_{0}^{x} t J_{0}(t) d t=x J_{1}(x)
$$

Letting $\lambda_{i} x=t$ we have

$$
\int_{0}^{1} x J_{0}\left(\lambda_{i} x\right) d x=\int_{0}^{\lambda_{i}} \frac{t}{\lambda_{i}} J_{0}(t) \frac{d t}{\lambda_{i}}=\frac{1}{\lambda_{i}^{2}}\left[\lambda_{i} J_{1}\left(\lambda_{i}\right)\right]=\frac{J_{1}\left(\lambda_{i}\right)}{\lambda_{i}}
$$

Thus

$$
a_{i}=\frac{2}{\lambda_{i} J_{1}\left(\lambda_{i}\right)}
$$

so that

$$
f(x)=2 \sum_{i=1}^{\infty} \frac{J_{0}\left(\lambda_{i} x\right)}{\lambda_{i} J_{1}\left(\lambda_{i}\right)}
$$

