
Ma 530

Infinite Series I
Please note that in addition to the material below this lecture incorporated material from the Visual
Calculus web site. The material on sequences is at Visual Sequences. (To use this link hold down the
Ctrl key and click.)

Definitions

Definition A series is a sequence of terms that you intend to add up.
A finite series has a finite number of terms and the sum is well-defined

and independent of the order in which the terms are added:


n1

k

an  a1  a2  a3   ak

An infinite series has an infinite number of terms and hence the sum is not
necessarily well-defined and may in fact depend on the order in which the terms are
added. Whether or not the sum is well-defined we still write the series as:


n1



an  a1  a2  a3 

The initial index may or may not be 1. If we don’t say whether a series is finite or
infinite, we normally mean an infinite series.

We will later give a precise way to add an infinite series, but we first give an example of the problems
that can arise if you add an infinite series incorrectly:

Example What is wrong with the following proof that 0  1 ?
0  0  0  0 

 1  1  1  1  1  1 
 1  1  1  1  1  1  1 
 1  0  0  0 

 1
Solution: The associative rule does not work for an infinite sum.

Remark: Thus if we add the terms of the sequence ann1 we get an expression of the form

a1  a2  a3   an  which is called a series and is denoted by
n1



an.

Definition — The Sum of the Series

Definition Given an infinite series S 
n1



an, its k th-partial sum is the finite series
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Sk 
n1

k

an. Then, the sum of the infinite series is defined to be

S  lim
k
Sk or 

n1



an  lim
k

n1

k

an

provided the limit exists or is positive or negative infinity.

Remark This says that an infinite sum must be computed in the order the terms are listed in
the series:


n1



an  a1  a2  a3   a4 

Remark Thus, an infinite series is associated with two sequences:
 the sequence of terms: an and
 the sequence of partial sums: Sk.
The sum of the series (or simply the series) is the sum of the sequence of terms and

is the limit of the sequence of partial sums.

Further Terminology:
 If the limit exists (i.e. S  lim

k
Sk is finite), we say the series exists or is convergent or

converges to S or has sum S.
 If the limit does not exist (i.e. lim

k
Sk does not exist), we say the series does not exist or is

divergent or diverges or does not have a sum.
 If the limit is positive infinity (i.e. lim

k
Sk  ), we say the series diverges to .

 If the limit is negative infinity (i.e. lim
k
Sk  ), we say the series diverges to .

To say that the limit is positive or negative infinity does not say that the limit exists! It merely says the
way in which it does not exist, i.e. the way in which it diverges.

Geometric Series — Finite

Definition A geometric series is a series in which the ratio of successive terms is a
constant.

We begin with finite geometric series:

Example The finite series S  3
4  38  3

16  3
32  3

64  3
128 is geometric and the ratio

of successive terms is 12 . The sum is S 
189
128 . This series may be written in summation notation

in many ways such as:
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S 
n1

6
3
2n1


n0

5
3
2n2


n2

7
3
2n 

n0

5
3
4

1
2

n

In any case, the first term is 34 , the ratio of successive terms is
1
2 , there are 6 terms and the sum is

189
128 .

We write the general finite geometric series as

S 
n0

k

arn  a  ar  ar2   ark1  ark

although many other forms are possible. In this series, the first term is a, the ratio of successive terms
is r and there are k  1 terms.

Summing the Series
Gauss found a way to write down the general sum without using a summation ( ) or an ellipsis ().
Proceed as follows: Multiply the series by r:

rS  ar  ar2  ar3   ark  ark1

Subtract the formula for rS from the formula for S and notice that all terms cancel except the first term
in S and the last term in rS :

S  rS  a  ark1

If r  1, this may be solved for S:

S  a1  rk1
1  r

If r  1, the original series may be easily summed:

S 
n0

k

a  a  a   a  k  1a

since there are k  1 terms each of which is a.

In summary, the general finite geometric series is

S 
n0

k

arn  a  ar  ar2   ark1  ark


a1  rk1
1  r if r  1

k  1a if r  1

where the first term is a, the ratio of successive terms is r and the number of terms is k  1.
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Example For our original example S 
n1

6
3
2n1

, find the sum by using the general formula.

Solution: The first term is 34 , the ratio of successive terms is
1
2 and there are 6 terms. So the sum is

S 
3
4 1  1

2
6

1  1
2


3
4

63
64
1
2

 189
128 . Notice that we do not need to write the summation with

the index starting at 0 before identifying the first term, the ratio, or the number of terms.

Example 
n2



4

n
is a Geometric Series where a  2

16 and r 

4 . Its sum 

2

16
1  

4


 1
4

2
  4 .

Your turn:

Exercise Compute
p2

7
2
3p ........................................................................................ ...

Geometric Series — Applications

Exercise A ball is dropped from a height of 12 feet. Each time it bounces it reaches a height
which is 23 of the height on the previous bounce.

1. What is the total distance travelled by the ball (on the infinite number of

bounces)?............................................................................. ... ...

2. What is the total time the ball takes to travel this distance?. ... ...

Exercise The spiral at the right is made from
an infinite number of semicircles
whose centers are all on the x-axis.
The first semicircle is centered at
x  1 and has radius r  1. The
radius of each subsequent semicircle
is half of the radius of the previous
semicircle.

0.5 1 1.5 2

1. Consider the infinite sequence of points where the spiral crosses the x-axis.

What is the x-coordinate of the limit of this sequence?....... ... ...

2. What is the total length of the spiral (with an infinite number of
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semicircles)?

Or, is the length infinite?..................................................... ... ...

Telescoping Series

Telescoping series are another class of series which can be summed exactly. Unfortunately, there is no
precise definition of a telescoping series. Suffice it to say that: part of each term cancels with part of
one or more subsequent terms allowing one to explicitly compute the partial sums and hence the total
sum of the series. The best way to understand telescoping series is through examples.

Example Compute S 
n1


1
n 

1
n  1 .

Solution: To see what is happening, we first write out the first six terms in two ways. On the one hand,
we combine the fractions:


n1


1
n 

1
n  1 

n1


1

nn  1  1
2  16  1

12  1
20  1

30  1
42 

In this form it is very hard to tell what the sum is. However, in the original form we have


n1


1
n 

1
n  1  1

1 
1
2  1

2 
1
3  1

3 
1
4  1

4 
1
5 

Part of each term cancels part of the next term. However, we cannot use the associative rule. So we
need to look at the partial sums.

We compute the k th partial sum and cancel everything except the first half of the first term and the
last half of the last term:

Sk 
n1

k
1
n 

1
n  1  1

1 
1
2  1

2 
1
3  1

3 
1
4   1

k 
1
k  1

 1  1
k  1

So the sum of the series is

S 
n1


1
n 

1
n  1  lim

k
Sk  lim

k
1  1

k  1  1

Convergence and Divergence Tests

Why is it important to know when a series converges? Because, for example:

Convergent Series May be Used to Define and Approximate Fundamental Constants
Mathematicians often use series to compute decimal values for fundamental constants (like  and e) or
to define new fundamental constants. Here are some examples.

Examples of Convergent Series Used to Define and Approximate
Fundamental Constants
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You are not yet expected to be able to prove the convergence of these series nor to estimate the error in
the approximation.

Example Compute 
n0


1
n!  1  1  12  16  1

24  1
120 

Remark Recall that n factorial is n!  n  n  1  n  2    3  2  1 and by definition
0!  1.

Solution: This series is neither geometric nor telescoping. So you do not yet know how to compute the
sum. However, it can be shown to converge (by the Ratio Test). Taking 21 terms the partial sum is

S20 
n0

20
1
n!  2.7182818284590452353 which can be shown to be correct to within 1019 (using

the Taylor Bound on the Remainder). In fact, Taylor’s theorem shows that the sum of the infinite series
is e. So this is an excellent way to find a decimal approximation to e.

Example Compute 
n1


1
n3

 1  18  1
27  1

64  1
125 

Solution: This series is called the p-series with p  3. It can be shown to converge (by the Integral

Test). Taking 25 terms the partial sum is S25 
n1

25
1
n3

 1.20129 which can be shown to be correct

to within 103 (using the Integral Bound on the Remainder). Riemann recognized that the sum of this
infinite series is a new transcendental number (not expressible in terms of  and e) and named it 3,
which is read “zeta of 3”.

Example Consider the series S  5  4  3  2  1  12  14  18  where later terms are
each half of the preceding term. Is this series convergent or divergent and why?

Solution: If we ignore the first three terms, the tail is the geometric series 2,1, 12 ,
1
4 ,
1
8 , whose

ratio is 12 . Consequently, the tail converges and so the series converges. In fact the sum of the

geometric tail is 2
1  12

 4. So the sum of the original series is S  5  4  3  4  16.

Definition A series
nno



an is positive if all of its terms are positive, an  0 for all n.

A series
nno



an is negative if all of its terms are negative, an  0 for all n.

A series
nno



an is indefinite if some terms are positive and some terms are

negative.

With these examples in mind, we can now turn to the Convergence and Divergence Tests. There is one
test which can show that a series is divergent. There are tests which can be used for series whose
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terms are all positive. And there are tests which can be used for series whose terms are both positive
and negative.
In addition, there is one general principle, used all the time, which we discuss now. It says that to
determine the convergence of a series, we can ignore any number of initial terms and only look at the
remaining part of the series, called the tail.

Definition A tail of the series
n i



an is any series of the form
nN



an where N  i.

Testing a Tail
A series

nno



an is convergent if and only if any (and hence every) tail is convergent.

Remark This says the convergence of a series does not depend on any finite number of terms.
Further, you can check for convergence by applying a convergence test to the tail.

Example Consider the series S  5  4  3  2  1  12  14  18  where later terms are
each half of the preceding term. Is this series convergent or divergent and why?

Solution: If we ignore the first three terms, the tail is the geometric series 2,1, 12 ,
1
4 ,
1
8 , whose

ratio is 12 . Consequently, the tail converges and so the series converges. In fact the sum of the

geometric tail is 2
1  12

 4. So the sum of the original series is S  5  4  3  4  16.

nth Term Divergence Test

Proposition The n th Term Divergence Test

If limn an  0, then
nno



an is divergent.

Remark If limn an  0 the n
th Term Divergence Test FAILS and says nothing about

nno



an; it

may be convergent or divergent.
Example Consider the series


n1


n
n  1 .

Since limn
n
n  1  1, this series diverges.

Example The Harmonic Series


n1


1
n

has limn
1
n  0 as the limit, but the series diverges. (We shall show this soon.)
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Example The series


n1



1n n
n2  n

diverges since
limn

n
n2  n

 1  0

Example The series


n1



1nn2  1  4  9  16  25 

diverges because limn an does not exist.

The Integral Test
The Integral Test: Suppose f is a continuous, positive, decreasing function on 1, and let an  fn.

Then the series
n1



an is convergent if and only if the improper integral 1

fxdx is convergent.

For the proof hold down the Ctrl key and click on Integral Test

Example The Harmonic Series
n1


1
n .

Consider fx  1
x on 1,; then fx is positive and decreasing and


1

 1
x dx  lim 1

 1
x dx  lim lnx1

  lim


ln  ln1  

Since this integral diverges, the given series diverges by the Integral Test.

Example The p-series
n1


1
np converges if p  1.

Consider fx  1
xp on 1,; then fx is positive and decreasing and


1

 1
xp dx  lim 1

 1
xp dx  lim

xp1
p  1 1



 lim


p1

p  1 
1

p  1

which diverges if p  1 since in this case 1  p  0 so that we are taking the limit of  to a positive
power as that power goes to . The series converges if p  1, since in this case we are taking the limit
of  to a negative power as that power goes to . [The case when p  1 reduces the p-series to the
Harmonic Series].

Example Show that the series
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
n2


1

nlnn2

converges.

Solution: Note that the series begins at n  2, since ln1  0. 1
nlnn2

 0, so let fx  1
xlnx2

.

Then


2

 1
xlnx2

 1
ln2

Thus the series converges by the Integral Test.

Integral Test Remainder Estimate
Theorem. The Integral Test Estimate. Suppose that


n1



an

is a series which satisfies the hypotheses of the Integral Test using the function f and which converges
to L. Let

sn  a1  a2   an
be the nth partial sum and let

rn  L  sn
Then


n1


fxdx  rn  

n


fxdx

For the proof and examples of this theorem hold down the Ctrl key and click on Integral Test Estimate
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