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Partial Differential Equations - Separation of Variables in
Multi-Dimensions
Temperature in an Infinite Cylinder

Consider an infinitely long, solid, circular cylinder of radius c with its axis coinciding with the z axis
of a system of cylindrical coordinates r,, z. We assume that the surface of the cylinder r  c is kept at
zero temperature. If u  ux,y, z, t is the temperature at any point x,y, z at any time t, then it can be
shown that u satisfies the three dimensional heat equation

uxx  uyy  uxx  1
k ut     1a

where k  0 is a constant.

Suppose at time t  0 the temperature u at any point in the cylinder is a function of r alone, i.e.
ux,y, z, 0  fr

Since we are dealing with a cylinder, we shall use cylindrical coordinates. Then
ux,y, z, t  ur,, z, t

It may be shown that since u does not initially depend on  and z, then it will not depend on them for
all time, i.e., ur,, z, t  ur, t In cylindrical coordinates the heat equation 1a becomes

urr  1
r ur 

1
r2 u  uzz 

1
k ut

Since u  ur, t we have

urr  1
r ur 

1
k ut     1b

ur, 0  fr     2 IC

uc, t  0     3 BC
We shall solve 1a, 2, 3 using separation of variables. We assume the ur, t  RrTt and 1b
implies

RT  1
r R

T  1
k RT



R
R  R

rR  1
k
T 
T  constant

Since physically we know that the temperature must go to 0 as t  , we choose the constant so that T
decays with time. Thus

R
R  R

rR  1
k
T 
t  2

We are then lead to the two ordinary differential equations
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T   k2T  0
rR   R  2rR  0

Then
Tt  T0ek

2t

where T0 is a constant.

It turns out that the equation for R is a form of Bessel’s equation. To see this let s  r. Then
dR
dr  dR

ds
ds
dr   dRds

d2R
ds2  2 d2R

ds2

and the equation above for R becomes

s d
2R
ds2  dRds  sR  0     4

Equation 4 is Bessel’s equation
x2y   xy   x2  p2y  0

with p  0. The solution of 4
Rs  c1J0s  c2Y0s

where J0 and Y0 are the Bessel functions of order zero of the first and second kind respectively. Since
the solution at r  0 must be finite and since Y0 is infinite at 0, we set c2  0 so that

Rr  c0J0r
Therefore

ur, t  AJ0rek
2t

The boundary condition 3 implies that
J0c  0

Thus  is such that c is a root (zero) of J0x. Since J0 has an infinite number of roots, then   n
where nc is the nth zero of J0. Thus

unr, t  AnJ0nrekn
2t n  1,2,

The functions J0nr form an infinite set of eigenfunctions. It can be shown that these functions form a
complete, orthogonal set with respect to the weight function r. Thus to satisfy condition 2
ur, 0  fr we let

ur, t 
n1



unr, t 
n1



AnJ0nrekn
2t

so that

ur, 0  fr 
n1



AnJ0nr

and

An  2
c2J1nc2 0

c
rfrJ0nrdr
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A Vibrating Circular Membrane

The motion of a membrane attached to a frame in the x,y plane is governed by the two dimensional
wave equation. We assume the membrane to be thin and flexible with a constant tension T , per unit
length across any line acting tangentially to the membrane at each point. Also we assume that the mass
per unit area,  is constant and that the displacement zx,y, t of the membrane is small. If no external
forces act on the membrane, then the transverse displacement z satisfies the two-dimensional wave
equation

zxx  zyy  1
a2 ztt

where a2  T /.

Consider now the vibrations of a circular membrane of radius c with center at the origin of the
x,y plane. If the outer edge is to be kept fixed, then z  0 on x2  y2  c2. This boundary condition in
unwieldy in rectangular coordinates. since our membrane is circular, we shall switch to polar
coordinates r and  where x  rcos, y  r sin. Then z  zr,, t and in polar coordinates the wave
equation becomes

zrr  1
r zr 

1
r2 z 

1
a2 ztt t  0, 0  r  c,           1

The boundary condition along the edge of the circular membrane takes the form
zc,, t  0           2

Equation 2 is clearly a much better form than the form of this condition in rectangular coordinates. In
addition to the boundary condition 2 one must be given initial conditions. We assume that the initial
displacement of the membrane is fr, and that it is released from rest. Hence we have

zr,, 0  fr,     3a

ztr,, 0  0     3b
We again assume that the problem can be solved by separation of variables and seek a solution

zr,, t  RrSTt
Equation 1 then implies

Rr
Rr 

Rr
rRr 

1
r2
S 
S 

T t
a2Tt

    4

Since the left hand side of 4 is independent of t and the right hand side is independent of  and r, we
have

Rr
Rr 

Rr
rRr 

1
r2
S 
S 

T t
a2Tt

 k, k a constant

It is to be expected that the motion will be periodic in time. Thus we expect Tt to be expressed in
terms of sines and cosines. To get this we let k  2. This leads to

T   a22T  0
Condition 3b implies T 0  0, so

Tt  Acosat
Equation 4 also tells us that
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Rr
Rr 

Rr
rRr 

1
r2
S 
S  2

or
r
R rR

  R  2r2   S

S     5

Since the left hand side is independent of  and the right hand side is independent of r, both sides must
equal a constant. Since we are using polar coordinates, S must be expressed as sines and cosines.
Hence

 S

S  2 or S   2S  0

which leads to
S  C1 cos  C2 sin

The displacement z must be a single-valued function of . This means that S must be periodic with
period 2. Thus  must be an integer n, and

Sn  cn cosn  dn sinn n  1,2,3,
Equation 5 implies

r
R rR

  R  2r2  n2

or
r2R  rR   2r2  n2R  0

This is Bessel’s equation and it has the solutions
Rr  C3Jnr  C4Ynr n  0,1,2,

Since the displacement at the origin must be finite, we set C4  0, since limr0 Ynr  . Thus
Rr  DnJnr n  0,1,2,

The condition 3b implies Rc  0, so  must be such that
Jnc  0 n  0,1,2,

Hence c is one of the zeroes of Jn, n  0,1,2, that is,   nk where nk is the kth zero of the nth
Bessel function Jn. Thus

Rnkr  DnkJnnkr n  0,1,2, ; k  1,2,3,
This means that

znkr,, t  Jnnkrank cosn  bnk sinncosankt n  0,1,2, ; k  1,2,3,
Thus we have a double infinity of eigenvalues and eigenfunctions.

We must still satisfy the condition
zr,, 0  fr,

Since f depends on two variables we assume that fr, has a Fourier series expansion of the form
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fr, 
n0



Anrcosn  Bnr sinn

where

A0r  1
2 


fr,dr     6a

Anr  1
 


fr,cosndr n  1,2,3,     6b

Bnr  1
 


fr, sinndr n  1,2,3,     6c

We let

zr,, t 
n0




k1



Jnnkrank cosn  bnk sinncosankt     7

Then

zr,, 0 
n0




k1



Jnnkrank cosn  bnk sinn  fr, 
n0



Anrcosn  Bnr sinn

Therefore

Anr 
k1



ankJnnkr

Bnr 
k1



bnkJnnkr

Since Anr and Bnr are known via 6a,b,c, we see that the ank and bnk are the Fourier-Bessel
coefficients in the expansions of An and Bn. Therefore

ank  2
c2Jn1nkc2 0

c
rAnrJnnkrdr

bnk  2
c2Jn1nkc2 0

c
rBnrJnnkrdr

Thus z is given by 7, with the coefficients determined by the above formulas.

Heat in a Hollow Cylinder

Suppose a homogeneous hollow cylinder which occupies the region a  r  b, 0    2, 0  z  h
(that is a piece of pipe of length h and thickness b  a has its ends z  0 and z  h maintained at
temperatures 0 and 100 respectively. The faces at r  a and r  b are insulated against the flow of
heat. Let r,, z, t the temperature in the solid. Assuming an initial temperature distribution fr,, z,
we must solve the boundary value problem for r,, z, t in the solid.

2  xx  yy  zz  1
c2  t

or in cylindrical coordinates
rr  1

r r 
1
r2   zz 

1
c2  t     1

r,, 0, t  0 r,,h, t  100 boundary conditions     2a, 2b
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ra,, z, t  rb,, z, t  0 insulation condition     3a,b

r,, z, 0  fr,, z initial condition     4

Notice that the boundary condition 2b is nonhomogeneous. To solve the problem we proceed as
follows: Let

  S  T

where S is the steady-state solution that does not depend on t. Hence
2S  0

Sr,, 0  0 Sr,,h  100

rSa,, z  rSb,, z  0
Remark: 2S  0 is Laplace’s equation which governs steady state temperature problems.

Now T is the transient solution and satisfies
2T  1

c2  t
T

Tr,, 0, t  0 Tr,,h, t  0

rTa,, z, t  rTb,, z, t  0
Note that the boundary conditions for T are both homogeneous. Thus S  T satisfies 1,2,3,4. The
initial condition for T is

Tr,, z, 0  fr,, z  Sr,, z

The solution to the problem for S is just the steady state solution of uniform flow of heat from the high
temperature end to the low temperature end and hence

S  100 zh
For the transient solution we use separation of variables. Let

T  UrVWzFt
Then 1 implies

U VWF  1
r U"VWF  1

r2 UV
WF  UVW F  1

c2 UVWF


or
U 

U  1
r
U 

U  1
r2
V
V  W



W  1
c2
F
F  2   0

Thus
F  2c2F  0

so
F  c1e

2c2t

We also have
U 

U  1
r
U 

U  1
r2
V
V  2  W



W  2     5
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(We shall later why the constant is chosen as 2. ) Then we have
W 

W  2  2 or W   2  2W  0

The homogeneous boundary conditions at z  0 and z  h imply
W0  Wh  0

so

Wz  c2 cos 2  2 z  c3 sin 2  2 z
Applying the conditions on W yields c2  0 and

2  2  k22

h2 k  1,2,

Hence

Wz  c3 sin k22

h2

Equation 5 implies
U 

U  1
r
U 

U  1
r2
V
V  2

or

r2 U 

U  r U


U  2r2   V


V  n2

We set V 
V  n2 since T must be a single-valued function of . Thus

V  n2V  0
and

V  c4 cosn  c5 sinn n  0,1,2,
The equation for U is

r2U   rU   2r2  n2U  0

(The choice of 2 above was motivated by the desire to get this last equation which is Bessel’s
equation.)

Therefore,
Ur  c6Jnr  c7Ynr

where Ynr is the Bessel function of the second kind.
The conditions about insulation, namely,

rTa,, z, t  rTb,, z, t  0
must be satisfied. These conditions imply

c6Jn a  c7Yn a  0
c6Jn b  c7Yn b  0

These two equations are to be solved to yield nontrivial solutions for c6 and c7. This means that  is a
solution of

Jn aYn b  Jn bYn a  0
For each fixed n there are an infinite number of zeroes . Thus   mn where mn is the mth root of
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the nth equation m  1,2, ,n  0,1,2, .

If mn is a root of the above equation, then

c7  c6
Jn mna
Yn mn

and

Ur  c6 Jnmnr  Ynmnr
Jn mna
Yn mn

 c6
JnmnrYn mn  YnmnrJn mna

Yn mna
 c6Umnr

Thus the formal solution is

Tr,, z, t 
no




m1




k1



akmn cosn  bkmn sinn sin k
h z Umnre

c2kmn
2 t

Note that  depends on k and  m and  depends on n and n so   kmn. Thus
r,, z, t  100 zh  T

To satisfy the initial condition we must have

fr,, z 
no




m1




k1



akmn cosn  bkmn sinn sin k
h z Umnr

It can be shown that the functions

kmn
1  cosn sin k

h z Umn

kmn
2  sinn sin k

h z Umn

form two orthogonal sets. These may be used to determine the constants akmn and bkmn.
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