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Partial Differential Equations - Separation of Variables in
Multi-Dimensions

Temperature in an Infinite Cylinder

Consider an infinitely long, solid, circular cylinder of radius ¢ with its axis coinciding with the z —axis
of a system of cylindrical coordinates r,60,z. We assume that the surface of the cylinder » = ¢ is kept at
zero temperature. If u = u(x,y,z,t) is the temperature at any point (x,y,z) at any time #, then it can be
shown that u satisfies the three dimensional heat equation

U + Uy + Uy = lu, (la)

k
where k£ > 0 is a constant.

Suppose at time ¢ = 0 the temperature u at any point in the cylinder is a function of » alone, i.e.
u(x,y,z,0) = fir)
Since we are dealing with a cylinder, we shall use cylindrical coordinates. Then
u(x,y,z,t) = u(r,0,z,1t)

It may be shown that since u does not initially depend on 6 and z, then it will not depend on them for
all time, i.e., u(7,0,z,t) = u(r,t) In cylindrical coordinates the heat equation (1a) becomes

Uy + %ur + F%U(ae + U, = %u,
Since u = u(r,t) we have
Uy + %u, = %ut (15)
u(r,0) = fr) (2)1C
u(c,t) =0 (3)BC

We shall solve (1a,2,3) using separation of variables. We assume the u(r,t) = R(»)7(¢) and (1b)
implies
1 _ 1
R'T+ —R'T = ?RT/

R R _ 1

R TR ™%
Since physically we know that the temperature must go to 0 as ¢t —» o, we choose the constant so that 7'
decays with time. Thus

A
LT = constant

R R’ 1.7
TR TET

We are then lead to the two ordinary differential equations

= -2



T +kA*T=0
"rR"+R' +A**R =0
Then
T(t) = Toe ™"

where T is a constant.

It turns out that the equation for R is a form of Bessel’s equation. To see this let s = Ar. Then
dR _ dR ds _ jdR

dr ds dr T ds
d*R _ 22 d*R
ds? ds?

and the equation above for R becomes

d’R | dR -
Sds2 + s +sR=0 4)

Equation (4) is Bessel’s equation
2y +xy'+ (x2=p2)y =0
with p = 0. The solution of (4)
R(s) = c1Jo(s) + c2Yo(s)
where J, and Yy are the Bessel functions of order zero of the first and second kind respectively. Since
the solution at » = 0 must be finite and since Y is infinite at 0, we set ¢; = 0 so that
R(r) = coJo(Ar)
Therefore
u(r,t) = AJo(Ar)e ™
The boundary condition (3) implies that
Jo(Ac) =0
Thus A is such that Ac is a root (zero) of Jo(x). Since Jy has an infinite number of roots, then A = 4,
where A,c is the nth zero of Jy. Thus
un(r,t) = ApJo(Aur)e™ it n=1,2,...
The functions Jy(1,7) form an infinite set of eigenfunctions. It can be shown that these functions form a

complete, orthogonal set with respect to the weight function ». Thus to satisfy condition (2)
u(r,0) = f{r) we let

u(r,t) = Zu,,(r, ) = ZAnJo(l,,r)e‘Wt
n=1 n=1
so that

I/l(l",O) Zf(I’) = iAnJO(lnr)

n=1

and

2
e 2[J1(Ane)]? .[0 rf(r)Jo(Anr)dr



A Vibrating Circular Membrane

The motion of a membrane attached to a frame in the x,y —plane is governed by the two dimensional
wave equation. We assume the membrane to be thin and flexible with a constant tension 7, per unit
length across any line acting tangentially to the membrane at each point. Also we assume that the mass
per unit area, 0 is constant and that the displacement z(x, y, ) of the membrane is small. If no external
forces act on the membrane, then the transverse displacement z satisfies the two-dimensional wave
equation

Zyxx +Zyy = Zy

1
aZ
where a2 = T/6.

Consider now the vibrations of a circular membrane of radius ¢ with center at the origin of the

x,y —plane. If the outer edge is to be kept fixed, then z = 0 on x? + y*> = ¢2. This boundary condition in
unwieldy in rectangular coordinates. since our membrane is circular, we shall switch to polar
coordinates 7 and 6 where x = rcosf, y = rsinfl. Then z = z(r,0,¢) and in polar coordinates the wave
equation becomes

Zotdz e Lz =Lz 150, 0<r<e, —n<0<2z
r a

The boundary condition along the edge of the circular membrane takes the form
z2(c,0,t) =0 —nw <0<~

Equation (2) is clearly a much better form than the form of this condition in rectangular coordinates. In
addition to the boundary condition (2) one must be given initial conditions. We assume that the initial
displacement of the membrane is f{r,6) and that it is released from rest. Hence we have

z(r,0,0) == f(r,0)
z:(r,0,0) =0
We again assume that the problem can be solved by separation of variables and seek a solution
z(r,0,t) = R(r)S(0)T(¢)

Equation (1) then implies

R'G)  R@) 1 80 _ T'0)

R(r) rR(r)  r* S(0) a*T(t)
Since the left hand side of (4) is independent of ¢ and the right hand side is independent of 8 and r, we
have

R"(r) N R'(r) +LS”(9) _T'®
R(r) rR(r)  r* S(09) a*T(t)

It is to be expected that the motion will be periodic in time. Thus we expect 7(¢) to be expressed in
terms of sines and cosines. To get this we let k = —A2. This leads to

T'+a’A’T =0

= k, ka constant

Condition (3b) implies 7'(0) = 0, so
T(t) = Acosalt
Equation (4) also tells us that

(1

)

(3a)
(3b)

4)



R'G) , R() 1 80)
R T RGY T sy -
or
7 1" ' 2.2 _ S”(e)
LR +R") +2°r* = ~50) (5)

Since the left hand side is independent of 8 and the right hand side is independent of 7, both sides must
equal a constant. Since we are using polar coordinates, S(6) must be expressed as sines and cosines.
Hence

_ SO

S0) u>or ST+uS=0

which leads to
S(0) = Cycosubd + C,sinub

The displacement z must be a single-valued function of 6. This means that S(6) must be periodic with
period 27. Thus p must be an integer #, and

S,(0) = c,cosnf +d,sinnf n=12,3,...
Equation (5) implies
%(I"R” +R") + A%r? = n?
or
PR"+rR' '+ (A*r* —n>)R=0
This is Bessel’s equation and it has the solutions
R(r) = C3J,(Ar) + C4Y,(Ar) n=0,1,2,...
Since the displacement at the origin must be finite, we set C4 = 0, since lim,.o ¥,,(Ar) = —co. Thus
R(r)=D,J,(Ar) n=0,1,2,...
The condition (3b) implies R(c) = 0, so A must be such that
Jo(Ae) =0 n=0,1,2,...

Hence Ac is one of the zeroes of J,, n = 0,1,2,... thatis, A = A, where A, is the kth zero of the nth
Bessel function J,,. Thus

Ru() =DuJ (Aur) n=0,1,2,...; k=1,273,...
This means that
Zu(r,0,t) = Jy(Aur)[ancosnd + by sinn@]cosalyt n=0,1,2,...; k=1,2,3,...

Thus we have a double infinity of eigenvalues and eigenfunctions.

We must still satisfy the condition
z(r,0,0) = f(r,0)

Since f'depends on two variables we assume that f{r,0) has a Fourier series expansion of the form



o0

fr,0) = Z[An(r) cosnd + B,(r)sinnb]

n=0
where
Ao(r) = 5 j r,0)dr (6a)
4,0) = %+ [ fir0)cosnbdr n=1,2.3,... (6b)
B.(r) = %j fr,0)sinnbdr n=1,2,3,... (6¢)
We let
z(r,0,t) = ZZJn(lnkr)[ank cosnf + b, sinnf] cos al it (7)
n=0 k=1
Then

2(r,0,0) = D D" Ju(Awr)[amcosnd + bysinnd] = fr,0) = D _[A(r)cosnd + B,(r)sinnd]

n=0 k=1 n=0

Therefore

An(r) = Zankt]n(lnkr)
k=1

Bn(r) = ankt]n(lnkr)
k=1

Since 4,(r) and B, (r) are known via (6a, b,c), we see that the a,; and b, are the Fourier-Bessel
coefficients in the expansions of 4, and B,. Therefore

2 C
nk = An Jn Z,n d
an = [ P4 e
b = 2 [ B (huar)dr

[Tt (Auic)]?

Thus z is given by (7), with the coefficients determined by the above formulas.

Heat in a Hollow Cylinder

Suppose a homogeneous hollow cylinder which occupies the regiona < r < b,0 <0 <27,0<z<h
(that is a piece of pipe of length / and thickness b — ) has its ends z = 0 and z = 4 maintained at
temperatures 0° and 100° respectively. The faces at » = a and » = b are insulated against the flow of
heat. Let ¢(7,0,z,¢) the temperature in the solid. Assuming an initial temperature distribution f{r,0,z),
we must solve the boundary value problem for ¢(7,0,z,¢) in the solid.

V2¢ = ¢xx + ¢yy + ¢zz = %qﬁ
or in cylindrical coordinates

¢l‘r + %qﬁr + %4500 + ¢zz = %(]51 (1)
r c

¢(r,0,0,t) =0 ¢(r,0,h,t) = 100 boundary conditions (2a,2b)



¢.(a,0,z,t) = ¢.(b,0,z,t) = 0 insulation condition (3a,b)
¢(r,0,2,0) = f(r,0,z) initial condition )

Notice that the boundary condition (2b) is nonhomogeneous. To solve the problem we proceed as
follows: Let

¢ — ¢S + ¢T
where ¢S is the steady-state solution that does not depend on ¢. Hence
V2 ¢S =0
¢5(r,0,0) =0 ¢5(,0,h) = 100
$7(a,0,z) = ¢7(b,0,z) = 0

Remark: V2¢5 = 0 is Laplace’s equation which governs steady state temperature problems.

Now @7 is the transient solution and satisfies
VT = gl
¢7(r,0,0,¢t) =0 @7(r,0,h,t) =0

¢ (a,0,z,t) = §1(b,0,z,1) = 0

Note that the boundary conditions for ¢ are both homogeneous. Thus ¢° + ¢ satisfies (1,2,3,4). The
initial condition for ¢7 is

#7(r,0,2,0) = f(r,0,z) — ¢5(r,0,z)

The solution to the problem for ¢° is just the steady state solution of uniform flow of heat from the high
temperature end to the low temperature end and hence

S _ Z
95 = 100Z

For the transient solution we use separation of variables. Let
¢" = U V(O)W()F()
Then (1) implies
U'VIF + 5 U VIWF + ~5 UV'WF + UVW'F = - UVWF

or
UT”+%%+F%LVH+WWH=C—12FT’:—AZ A>0
Thus
F' +A2c¢*F =0
SO

We also have

ﬂ+%%+%w:_lz_ﬂ:_az (5)



(We shall later why the constant is chosen as —a?.) Then we have

WWH =-A+a®> or W +A*>-a® )W =0

The homogeneous boundary conditions at z = 0 and z = 4 imply
W) = W) =0
SO
W(z) = CQCOSMZ+C3Sian
Applying the conditions on W yields ¢, = 0 and

Poat= K g-1,

Hence

Equation (5) implies

or
,ﬂ%” +r7/ +a’r? = —V7” = n?
We set V7 = —n? since ¢” must be a single-valued function of . Thus
V'+n?V =0
and

V(@) = cqscosnb + cssinnd n=0,1,2,...
The equation for U is
I’2U” +}"U/ + (a2r2 _ n2)U =0

(The choice of —a? above was motivated by the desire to get this last equation which is Bessel’s
equation.)

Therefore,

U@r) = ceJu(ar) + c7Y,.(ar)
where Y, (ar) is the Bessel function of the second kind.
The conditions about insulation, namely,

$1(a,0,z,t) = ¢I(b,0,z,t) = 0
must be satisfied. These conditions imply
ceJy(aa) + c7Y,(aa) =0
ceJ,(ab) +c7Y,(ab) = 0

These two equations are to be solved to yield nontrivial solutions for ¢¢ and ¢;. This means that ¢ is a
solution of

Ju(aa)Y,(ab) - J,(ab)Y,(aa) = O

For each fixed n there are an infinite number of zeroes . Thus o = «,,, where a ., is the mth root of



the nth equation (m = 1,2,...,n = 0,1,2,...).

If @, 1s a root of the above equation, then

_ o Inlama)
Y @)
and
U(I") = c6|:']n(amnr) - Yn(amn"‘)% :|
= o] el (te) =Yl () |
o Y;(amna)
= ceUnmn(7)

Thus the formal solution is
B o0 o0 0 ) ] kﬂ 762 /2
d7(r,0,z,t) = Z ; ;[akmn c0s8 10 + by, sinnd] s1n( 72) U (7)™ Fiomt
Note that A depends on k and @ m and a depends on n and n so A = A4y,. Thus

¢(r,0,z,t) = 100% g7

To satisfy the initial condition we must have
f1,0.2) = 3 37 D k0310 + iy sinnd] sin (22 ) U, ()
n=o m=1 k=1
It can be shown that the functions

w) = cosn sin( k—”z) Upnn

h
@ _ in( &z
Wiom = smn@sm( 7 Z)Um,,

form two orthogonal sets. These may be used to determine the constants @, and bmy.



