
Ma 530

Partial Differential Equations - Separation of Variables in
Multi-Dimensions
Temperature in an Infinite Cylinder

Consider an infinitely long, solid, circular cylinder of radius c with its axis coinciding with the z axis
of a system of cylindrical coordinates r,, z. We assume that the surface of the cylinder r  c is kept at
zero temperature. If u  ux,y, z, t is the temperature at any point x,y, z at any time t, then it can be
shown that u satisfies the three dimensional heat equation

uxx  uyy  uxx  1
k ut     1a

where k  0 is a constant.

Suppose at time t  0 the temperature u at any point in the cylinder is a function of r alone, i.e.
ux,y, z, 0  fr

Since we are dealing with a cylinder, we shall use cylindrical coordinates. Then
ux,y, z, t  ur,, z, t

It may be shown that since u does not initially depend on  and z, then it will not depend on them for
all time, i.e., ur,, z, t  ur, t In cylindrical coordinates the heat equation 1a becomes

urr  1
r ur 

1
r2 u  uzz 

1
k ut

Since u  ur, t we have

urr  1
r ur 

1
k ut     1b

ur, 0  fr     2 IC

uc, t  0     3 BC
We shall solve 1a, 2, 3 using separation of variables. We assume the ur, t  RrTt and 1b
implies

RT  1
r R

T  1
k RT



R
R  R

rR  1
k
T 
T  constant

Since physically we know that the temperature must go to 0 as t  , we choose the constant so that T
decays with time. Thus

R
R  R

rR  1
k
T 
t  2

We are then lead to the two ordinary differential equations
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T   k2T  0
rR   R  2rR  0

Then
Tt  T0ek

2t

where T0 is a constant.

It turns out that the equation for R is a form of Bessel’s equation. To see this let s  r. Then
dR
dr  dR

ds
ds
dr   dRds

d2R
ds2  2 d2R

ds2

and the equation above for R becomes

s d
2R
ds2  dRds  sR  0     4

Equation 4 is Bessel’s equation
x2y   xy   x2  p2y  0

with p  0. The solution of 4
Rs  c1J0s  c2Y0s

where J0 and Y0 are the Bessel functions of order zero of the first and second kind respectively. Since
the solution at r  0 must be finite and since Y0 is infinite at 0, we set c2  0 so that

Rr  c0J0r
Therefore

ur, t  AJ0rek
2t

The boundary condition 3 implies that
J0c  0

Thus  is such that c is a root (zero) of J0x. Since J0 has an infinite number of roots, then   n
where nc is the nth zero of J0. Thus

unr, t  AnJ0nrekn
2t n  1,2,

The functions J0nr form an infinite set of eigenfunctions. It can be shown that these functions form a
complete, orthogonal set with respect to the weight function r. Thus to satisfy condition 2
ur, 0  fr we let

ur, t 
n1



unr, t 
n1



AnJ0nrekn
2t

so that

ur, 0  fr 
n1



AnJ0nr

and

An  2
c2J1nc2 0

c
rfrJ0nrdr

2



A Vibrating Circular Membrane

The motion of a membrane attached to a frame in the x,y plane is governed by the two dimensional
wave equation. We assume the membrane to be thin and flexible with a constant tension T , per unit
length across any line acting tangentially to the membrane at each point. Also we assume that the mass
per unit area,  is constant and that the displacement zx,y, t of the membrane is small. If no external
forces act on the membrane, then the transverse displacement z satisfies the two-dimensional wave
equation

zxx  zyy  1
a2 ztt

where a2  T /.

Consider now the vibrations of a circular membrane of radius c with center at the origin of the
x,y plane. If the outer edge is to be kept fixed, then z  0 on x2  y2  c2. This boundary condition in
unwieldy in rectangular coordinates. since our membrane is circular, we shall switch to polar
coordinates r and  where x  rcos, y  r sin. Then z  zr,, t and in polar coordinates the wave
equation becomes

zrr  1
r zr 

1
r2 z 

1
a2 ztt t  0, 0  r  c,           1

The boundary condition along the edge of the circular membrane takes the form
zc,, t  0           2

Equation 2 is clearly a much better form than the form of this condition in rectangular coordinates. In
addition to the boundary condition 2 one must be given initial conditions. We assume that the initial
displacement of the membrane is fr, and that it is released from rest. Hence we have

zr,, 0  fr,     3a

ztr,, 0  0     3b
We again assume that the problem can be solved by separation of variables and seek a solution

zr,, t  RrSTt
Equation 1 then implies

Rr
Rr 

Rr
rRr 

1
r2
S 
S 

T t
a2Tt

    4

Since the left hand side of 4 is independent of t and the right hand side is independent of  and r, we
have

Rr
Rr 

Rr
rRr 

1
r2
S 
S 

T t
a2Tt

 k, k a constant

It is to be expected that the motion will be periodic in time. Thus we expect Tt to be expressed in
terms of sines and cosines. To get this we let k  2. This leads to

T   a22T  0
Condition 3b implies T 0  0, so

Tt  Acosat
Equation 4 also tells us that

3



Rr
Rr 

Rr
rRr 

1
r2
S 
S  2

or
r
R rR

  R  2r2   S

S     5

Since the left hand side is independent of  and the right hand side is independent of r, both sides must
equal a constant. Since we are using polar coordinates, S must be expressed as sines and cosines.
Hence

 S

S  2 or S   2S  0

which leads to
S  C1 cos  C2 sin

The displacement z must be a single-valued function of . This means that S must be periodic with
period 2. Thus  must be an integer n, and

Sn  cn cosn  dn sinn n  1,2,3,
Equation 5 implies

r
R rR

  R  2r2  n2

or
r2R  rR   2r2  n2R  0

This is Bessel’s equation and it has the solutions
Rr  C3Jnr  C4Ynr n  0,1,2,

Since the displacement at the origin must be finite, we set C4  0, since limr0 Ynr  . Thus
Rr  DnJnr n  0,1,2,

The condition 3b implies Rc  0, so  must be such that
Jnc  0 n  0,1,2,

Hence c is one of the zeroes of Jn, n  0,1,2, that is,   nk where nk is the kth zero of the nth
Bessel function Jn. Thus

Rnkr  DnkJnnkr n  0,1,2, ; k  1,2,3,
This means that

znkr,, t  Jnnkrank cosn  bnk sinncosankt n  0,1,2, ; k  1,2,3,
Thus we have a double infinity of eigenvalues and eigenfunctions.

We must still satisfy the condition
zr,, 0  fr,

Since f depends on two variables we assume that fr, has a Fourier series expansion of the form
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fr, 
n0



Anrcosn  Bnr sinn

where

A0r  1
2 


fr,dr     6a

Anr  1
 


fr,cosndr n  1,2,3,     6b

Bnr  1
 


fr, sinndr n  1,2,3,     6c

We let

zr,, t 
n0




k1



Jnnkrank cosn  bnk sinncosankt     7

Then

zr,, 0 
n0




k1



Jnnkrank cosn  bnk sinn  fr, 
n0



Anrcosn  Bnr sinn

Therefore

Anr 
k1



ankJnnkr

Bnr 
k1



bnkJnnkr

Since Anr and Bnr are known via 6a,b,c, we see that the ank and bnk are the Fourier-Bessel
coefficients in the expansions of An and Bn. Therefore

ank  2
c2Jn1nkc2 0

c
rAnrJnnkrdr

bnk  2
c2Jn1nkc2 0

c
rBnrJnnkrdr

Thus z is given by 7, with the coefficients determined by the above formulas.

Heat in a Hollow Cylinder

Suppose a homogeneous hollow cylinder which occupies the region a  r  b, 0    2, 0  z  h
(that is a piece of pipe of length h and thickness b  a has its ends z  0 and z  h maintained at
temperatures 0 and 100 respectively. The faces at r  a and r  b are insulated against the flow of
heat. Let r,, z, t the temperature in the solid. Assuming an initial temperature distribution fr,, z,
we must solve the boundary value problem for r,, z, t in the solid.

2  xx  yy  zz  1
c2  t

or in cylindrical coordinates
rr  1

r r 
1
r2   zz 

1
c2  t     1

r,, 0, t  0 r,,h, t  100 boundary conditions     2a, 2b

5



ra,, z, t  rb,, z, t  0 insulation condition     3a,b

r,, z, 0  fr,, z initial condition     4

Notice that the boundary condition 2b is nonhomogeneous. To solve the problem we proceed as
follows: Let

  S  T

where S is the steady-state solution that does not depend on t. Hence
2S  0

Sr,, 0  0 Sr,,h  100

rSa,, z  rSb,, z  0
Remark: 2S  0 is Laplace’s equation which governs steady state temperature problems.

Now T is the transient solution and satisfies
2T  1

c2  t
T

Tr,, 0, t  0 Tr,,h, t  0

rTa,, z, t  rTb,, z, t  0
Note that the boundary conditions for T are both homogeneous. Thus S  T satisfies 1,2,3,4. The
initial condition for T is

Tr,, z, 0  fr,, z  Sr,, z

The solution to the problem for S is just the steady state solution of uniform flow of heat from the high
temperature end to the low temperature end and hence

S  100 zh
For the transient solution we use separation of variables. Let

T  UrVWzFt
Then 1 implies

U VWF  1
r U"VWF  1

r2 UV
WF  UVW F  1

c2 UVWF


or
U 

U  1
r
U 

U  1
r2
V
V  W



W  1
c2
F
F  2   0

Thus
F  2c2F  0

so
F  c1e

2c2t

We also have
U 

U  1
r
U 

U  1
r2
V
V  2  W



W  2     5
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(We shall later why the constant is chosen as 2. ) Then we have
W 

W  2  2 or W   2  2W  0

The homogeneous boundary conditions at z  0 and z  h imply
W0  Wh  0

so

Wz  c2 cos 2  2 z  c3 sin 2  2 z
Applying the conditions on W yields c2  0 and

2  2  k22

h2 k  1,2,

Hence

Wz  c3 sin k22

h2

Equation 5 implies
U 

U  1
r
U 

U  1
r2
V
V  2

or

r2 U 

U  r U


U  2r2   V


V  n2

We set V 
V  n2 since T must be a single-valued function of . Thus

V  n2V  0
and

V  c4 cosn  c5 sinn n  0,1,2,
The equation for U is

r2U   rU   2r2  n2U  0

(The choice of 2 above was motivated by the desire to get this last equation which is Bessel’s
equation.)

Therefore,
Ur  c6Jnr  c7Ynr

where Ynr is the Bessel function of the second kind.
The conditions about insulation, namely,

rTa,, z, t  rTb,, z, t  0
must be satisfied. These conditions imply

c6Jn a  c7Yn a  0
c6Jn b  c7Yn b  0

These two equations are to be solved to yield nontrivial solutions for c6 and c7. This means that  is a
solution of

Jn aYn b  Jn bYn a  0
For each fixed n there are an infinite number of zeroes . Thus   mn where mn is the mth root of
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the nth equation m  1,2, ,n  0,1,2, .

If mn is a root of the above equation, then

c7  c6
Jn mna
Yn mn

and

Ur  c6 Jnmnr  Ynmnr
Jn mna
Yn mn

 c6
JnmnrYn mn  YnmnrJn mna

Yn mna
 c6Umnr

Thus the formal solution is

Tr,, z, t 
no




m1




k1



akmn cosn  bkmn sinn sin k
h z Umnre

c2kmn
2 t

Note that  depends on k and  m and  depends on n and n so   kmn. Thus
r,, z, t  100 zh  T

To satisfy the initial condition we must have

fr,, z 
no




m1




k1



akmn cosn  bkmn sinn sin k
h z Umnr

It can be shown that the functions

kmn
1  cosn sin k

h z Umn

kmn
2  sinn sin k

h z Umn

form two orthogonal sets. These may be used to determine the constants akmn and bkmn.
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