Ma 530

Partial Differential Equations

The Vibrating String

It may be shown that the equation governing a string of length L vibrating is

$$
\begin{equation*}
y_{x x}(x, t)=\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{\alpha^{2}} y_{t t}(x, t) \tag{1}
\end{equation*}
$$

$y(x, t)$ is the displacement of the string from the x-axis at the point x at time t. Equation (1) is called the wave equation. α is a constant. Suppose string is held fixed at the ends $x=0$ and $x=L$

\Rightarrow

$$
\text { (2a) } y(0, t)=0 \quad t \geq 0 \quad \text { B.C. }
$$

$$
\text { (2b) } y(L, t)=0 \quad t \geq 0 \quad \text { B.C. }
$$

Also suppose at $t=0$ string has displacement $y=f(x)$ and is released from rest \Rightarrow
(3a) $y(x, 0)=f(x) \quad 0 \leq x \leq L \quad$ I.C.
(3b) $y_{t}(x, 0)=0 \quad 0 \leq x \leq L \quad$ I.C.

In order to solve the above problem we shall assume $y(x, t)=X(x) T(t)$ separation of variables $\Rightarrow y_{x}=X^{\prime} T \quad y_{x x}=X^{\prime \prime} T \quad y_{t t}=X T^{\prime \prime}$. Note that $X^{\prime}, T^{\prime}, \ldots$ are ordinary derivatives of X with respect to x and T with respect to t. Now the P.D.E. (1)

$$
\begin{array}{ll}
\Rightarrow & X^{\prime \prime} T=\frac{1}{\alpha^{2}} X T^{\prime \prime} \\
\Rightarrow & \frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime \prime}}{T}
\end{array}
$$

Note that the left hand side is a function of x only, whereas the right hand side is a function of t only. This implies that each side must equal the same constant. Therefore

$$
\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime \prime}}{T}=k
$$

Hence we get the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime \prime}-\alpha^{2} k T=0
$$

Now $y(0, t)=X(0) T(t)=0 \Rightarrow X(0)=0$, whereas $y(L, t)=X(L) T(t)=0 \Rightarrow X(L)=0$. Therefore we must solve the problem

$$
X^{\prime \prime}-k X=0 \quad X(0)=X(L)=0 .
$$

There are three cases. If $k=0 \Rightarrow X \equiv 0$. If $k>0 \Rightarrow X=c_{1} e^{\sqrt{k} x}+c_{2} e^{-\sqrt{k} x}$. and the boundary conditions $\Rightarrow c_{1}=c_{2}=0$.

For the case $k<0$, let $k=-\lambda^{2}$

$$
\begin{aligned}
& \Rightarrow \\
& \qquad X^{\prime \prime}+\lambda^{2} X=0 \quad X(0)=X(L)=0
\end{aligned}
$$

This is an eigenvalue problem. The solution to the DE is

$$
X=c_{1} \sin \lambda x+c_{2} \cos \lambda x
$$

$X(0)=0 \Rightarrow c_{2}=0$ whereas $X(L)=0 \Rightarrow c_{1} \sin \lambda L=0 \Rightarrow \lambda=\frac{n \pi}{L}$ for $n= \pm 1, \pm 2, \pm 3, \ldots$.
Since $\sin (-x)=-\sin x$ we may disregard the negative values of n.
Therefore

$$
X(x)=c_{n} \sin \frac{n \pi}{L} x \quad n=1,2,3, \ldots
$$

For $T(t)$ we have the equation

$$
T^{\prime \prime}+\lambda^{2} T=0
$$

since $k=-\lambda^{2}$. Thus

$$
T=c \sin \alpha \lambda t+d \cos \alpha \lambda t=a_{n} \sin \frac{n \pi \alpha}{L} t+b_{n} \cos \frac{n \pi \alpha t}{L}
$$

But $y_{t}(x, 0)=X(x) T^{\prime}(0)=0 \Rightarrow T^{\prime}(0)=0$. Now

$$
T^{\prime}(t)=a_{n}\left(\frac{n \pi}{L}\right) \cos \frac{n \pi}{L} t-b_{n}\left(\frac{n \pi}{L}\right) \sin \frac{n \pi t}{L}
$$

, so $T^{\prime}(0)=0 \Rightarrow a_{n}=0$ for all n.
Therefore

$$
T(t)=b_{n} \cos \frac{n \pi \alpha t}{L}, n=1,2, \ldots
$$

and we have finally that

$$
y_{n}(x, t)=X(x) T(t)=c_{n} \sin \frac{n \pi x}{L} \times b_{n} \cos \frac{n \pi \alpha t}{L}
$$

Let $c_{n} \times b_{n}=d_{n}$.
We note that

$$
y_{n}(x, t)=d_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi \alpha t}{L}\right)
$$

satisfies the P.D.E. $y_{x x}=\frac{1}{\alpha^{2}} y_{t t}(1) \quad$ and the boundary conditions $y(0, t)=y(L, t)=0(2 a, 2 b)$, as well as the initial condition $y_{t}(x, 0)=0(3 b)$.

What about the condition $y(x, 0)=f(x)$? Notice that

$$
y(x, t)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi \alpha t}{L}
$$

is also a solution since of $(1),(2 a, b)$ and (3b). Thus $y(x, t)$ is solution of everything except condition (3a), namely, $y(x, 0)=f(x)$.
But

$$
y(x, 0)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L}=f(x) .
$$

Therefore if f has a Fourier sine series expansion we let

$$
\begin{aligned}
& \Rightarrow \\
& \qquad d_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} .
\end{aligned}
$$

Now with these coefficients d_{n}

$$
y(x, t)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi \alpha t}{L}
$$

is a solution to entire problem (1), $(2 a, 2 b),(3 a, 3 b)$.

Example

$$
\begin{aligned}
y_{x x} & =y_{t t} \quad y(0, t)=y(L, t)=0 \\
y_{t}(x, 0) & =0 \\
y(x, 0) & =-2 \sin \frac{\pi x}{L}
\end{aligned}
$$

Now

$$
\begin{gathered}
y(x, t)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi t}{L} \\
d_{n}=\frac{2}{L} \int_{0}^{L}(-2) \sin \frac{\pi x}{L} \sin \frac{n \pi x}{L} d x=0 \quad n=2,3, \ldots \\
d_{1}=\frac{2}{L} \int_{0}^{L}(-2) \sin ^{2} \frac{n \pi x}{L} d x \\
=\frac{-4}{L}\left[\int_{0}^{L} \frac{1-\cos \left(2 \frac{n \pi x}{L}\right)}{2}\right] d x=\frac{-4}{L}\left[\frac{x}{2}-\frac{\sin \left(2 \frac{n \pi x}{L}\right)}{\frac{2 n \pi}{L}}\right]_{0}^{L}=-2
\end{gathered}
$$

Another way to get d_{1} is to note that

$$
y(x, 0)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L}=d_{1} \sin \frac{\pi x}{L}+d_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots=-2 \sin \frac{\pi x}{L}
$$

\Rightarrow solution is

$$
y(x, t)=-2 \sin \frac{\pi x}{L} \cos \frac{\pi t}{L} .
$$

Example Use separation of variables, $u(r, \theta)=R(r) T(\theta)$, to find ordinary differential equations which $R(r)$ and $T(\theta)$ must satisfy if $u(r, \theta)$ is to be a solution of

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

Do not solve these equations.
Solution: Let $u(r, \theta)=R(r) T(\theta)$ then $\quad u_{r}=R^{\prime}(r) T(\theta) \quad u_{r r}=R^{\prime \prime}(r) T(\theta) \quad u_{\theta \theta}=R(r) T^{\prime \prime}(\theta)$ and $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ becomes

$$
\begin{gathered}
R^{\prime \prime}(r) T(\theta)+\frac{1}{r} R^{\prime}(r) T(\theta)+\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta)=0 \\
r^{2} R^{\prime \prime}(r) T(\theta)+r R^{\prime}(r) T(\theta)=-R(r) T^{\prime \prime}(\theta) \\
\frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{-R(r)}=\frac{T^{\prime \prime}(\theta)}{T(\theta)}=k
\end{gathered}
$$

since R and T are independent
resulting in the equations

$$
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+k R(r)=0
$$

and

$$
T^{\prime \prime}(\theta)-k T(\theta)=0
$$

Example Solve

$$
\begin{array}{rlrl}
\text { PDE } & u_{x x} & =4 u_{t t} & \\
\mathrm{BCS} & u_{x}(0, t) & =0 & \\
u_{x}(\pi, t)=0 \\
\text { ICs } & u(x, 0) & =0 & u_{t}(x, 0)=-9 \cos (4 x)+16 \cos (8 x)
\end{array}
$$

Derive the solution. The solution should not have any arbitrary constants in it. Solution:
Let $u(x, t)=X(x) T(t)$. Then differentiating and substituting in the PDE yields

$$
\begin{gathered}
X^{\prime \prime} T=4 X T^{\prime \prime} \\
\quad \Rightarrow \\
\frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime \prime}}{T}
\end{gathered}
$$

Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t, and the only way that they can be equal is if they are equal to a constant, we get

$$
\frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime \prime}}{T}=k \quad k \text { a constant }
$$

This yields the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime \prime}-\frac{1}{4} k T=0
$$

The boundary condition $u_{x}(0, t)=0$ implies, since $u_{x}(x, t)=X^{\prime}(x) T(t)$ that $X^{\prime}(0) T(t)=0$. We cannot have $T(t)=0$, since this would imply that $u(x, t)=0$. Thus $X^{\prime}(0)=0$. Similarly, the boundary condition $u_{x}(\pi, t)=0$ leads to $X^{\prime}(\pi)=0$.

We now have the following boundary value problem for $X(x)$:

$$
X^{\prime \prime}-k X=0 \quad X^{\prime}(0)=X^{\prime}(\pi)=0
$$

For $k>0$, the only solution is $X=0$. For $k=0$ we have $X=A x+B . X^{\prime}(x)=A$, so the BCs imply that

$$
X(x)=B, \quad B \neq 0
$$

is a nontrivial solution corresponding to the eigenvalue $k=0$.
For $k<0$, let $-k=\alpha^{2}$, where $\alpha \neq 0$. Then we have the equation

$$
X^{\prime \prime}+\alpha^{2} X=0
$$

and

$$
\begin{gathered}
X(x)=c_{1} \sin \alpha x+c_{2} \cos \alpha x \\
X^{\prime}(x)=c_{1} \alpha \cos \alpha x-c_{2} \alpha \sin \alpha x \\
X^{\prime}(0)=c_{1} \alpha=0
\end{gathered}
$$

so $c_{1}=0$.

$$
X^{\prime}(\pi)=-c_{2} \alpha \sin \alpha \pi=0
$$

Therefore $\alpha=n, n=1,2, \ldots$ and the solution is

$$
k=-n^{2} \quad X_{n}(x)=a_{n} \cos n x \quad n=1,2,3, \ldots
$$

The case $k=0$ implies that the equation for T becomes $T^{\prime \prime}=0$, so $T=A t+B$. The initial condition $u(x, 0)=0$ implies $X(x) T(0)=0$ so that $T(0)=0$. Thus $B=0$ and $T=A t$ for $k=0$.
Substituting the values of $k=-n^{2}$ into the equation for $T(t)$ leads to

$$
T^{\prime \prime}+\frac{n^{2}}{4} T=0
$$

which has the solution

$$
T_{n}(t)=B_{n} \sin \frac{n t}{2}+C_{n} \cos \frac{n t}{2}, \quad n=1,2,3, \ldots
$$

The initial condition $u(x, 0)=0$ implies $X(x) T(0)=0$ so that $T(0)=0$. Thus $C_{n}=0$.

We now have the solutions

$$
\begin{aligned}
& u_{n}(x, t)=A_{n} \cos n x \sin \frac{n t}{2} \quad n=1,2,3, \ldots \\
& u_{0}(x, t)=A_{0} t
\end{aligned}
$$

Since the boundary conditions and the equation are linear and homogeneous, it follows that

$$
u(x, t)=\sum_{n=0}^{\infty} u_{n}(x, t)=A_{0} t+\sum_{n=1}^{\infty} A_{n} \cos n x \sin \frac{n t}{2}
$$

satisfies the PDE, the boundary conditions, and the first initial condition. Since

$$
u_{t}(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n}\left(\frac{n}{2}\right) \cos n x \cos \frac{n t}{2}
$$

the last initial condition leads to

$$
u_{t}(x, 0)=-9 \cos (4 x)+16 \cos (8 x)=A_{0}+\sum_{n=1}^{\infty} A_{n}\left(\frac{n}{2}\right) \cos n x
$$

Matching the cosine terms on both sides of this equation leads to
$A_{4}\left(\frac{4}{2}\right)=-9$ so that $A_{4}=-\frac{9}{2}$ and $A_{8}\left(\frac{8}{2}\right)=16$ so that $A_{8}=4$. All of the other constants must be zero, since there are no cosine terms or constant terms on the left to match with. Thus

$$
u(x, t)=-\frac{9}{2} \cos 4 x \sin 2 t+4 \cos 8 x \sin 4 t
$$

The Heat Equation

Consider a cylinder parallel to x-axis

Let u denote the temperature in the cylinder. Suppose the ends $x=0$ and $x=L$ are kept at zero temperature whereas at $t=0$ the initial temperature distribution is $u=f(x)$. It may be shown that $u=u(x, t)$ satisfies the P.D.E.

$$
\begin{equation*}
u_{x x}=\frac{1}{k} u_{t} \quad 0<x<L, \quad t>0, \tag{1}
\end{equation*}
$$

where k is a constant and $k>0$.

Equation (1) is called the heat equation. The physical conditions of the problem imply

$$
\begin{align*}
& \text { B.C. } u(0, t)=0=u(L, t) \quad t \geq 0 \tag{2}\\
& \text { I.C. } u(x, 0)=f(x) \quad 0 \leq x \leq L \tag{3}
\end{align*}
$$

We want to determine $u(x, t)$, i.e. the temperature in the cylinder at any point x at any time t. Again we use separation of variables. The assumption $u(x, t)=X(x) T(t)$ leads to

$$
\begin{aligned}
& \qquad \frac{X^{\prime \prime}(x)}{X(x)}=\frac{1}{k} \frac{T^{\prime}(t)}{T(t)}=-\lambda^{2} \\
& \Rightarrow X^{\prime \prime}+\lambda^{2} X=0 \quad X(0)=X(L)=0 \text { and } T^{\prime}+k \lambda^{2} T=0 . \\
& \Rightarrow X_{n}=c_{n} \sin \left(\frac{n \pi x}{L}\right) \quad n=1,2, \ldots \quad \lambda_{n}=\frac{n \pi}{L} \Rightarrow \\
& \Rightarrow \quad T^{\prime}+k \frac{n^{2} \pi^{2}}{L^{2}} T=0 \\
& \Rightarrow \quad T_{n}(t)=d_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \\
& \Rightarrow \\
& u_{n}(x, t)=a_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \sin \frac{n \pi x}{L}
\end{aligned}
$$

satisfies (1) and (2) \Rightarrow

$$
u_{n}(x, t)=\sum_{1}^{\infty} a_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \sin \frac{n \pi x}{L}
$$

also satisfies (1) and (2).

We need to satisfy (3) namely, $u(x, 0)=f(x)$ However,

$$
u(x, 0)=\sum_{1}^{\infty} a_{n} \sin \frac{n \pi x}{L}
$$

Thus we take a_{n} to be the Fourier sine coefficients of $f(x)$. Hence

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

Remark. The factor $e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \rightarrow 0$ as $t \rightarrow \infty \Rightarrow \lim _{t \rightarrow \infty} u(x, t)=0$ as expected from the physical problem.
Example Solve:

$$
\begin{aligned}
\text { P.D.E.: } & u_{x x}=4 u_{t} \\
\text { B.C.s: } & u(0, t)=u(2, t)=0 \\
\text { I.C.: } & u(x, 0)=-3 \sin \frac{\pi x}{2}+23 \sin \pi x-4 \sin 2 \pi x
\end{aligned}
$$

Let $u(x, t)=X(x) T(t)$. Then differentiating and substituting in the PDE yields

$$
\begin{aligned}
X^{\prime \prime} T & =4 X T^{\prime} \\
& \Rightarrow \frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime}}{T}
\end{aligned}
$$

Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t, and the only way that they can be equal is if they are equal to a constant, we get

$$
\frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime}}{T}=k \quad k \text { a constant }
$$

This yields the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime}-\frac{1}{4} k T=0
$$

The boundary condition $u(0, t)=0$ implies that $X(0) T(t)=0$. We cannot have $T(t)=0$, since this would imply that $u(x, t)=0$. Thus $X(0)=0$. Similarly, the boundary condition $u(2, t)=0$ leads to $X(2)=0$.

We now have the following boundary value problem for $X(x)$:

$$
X^{\prime \prime}-k X=0 \quad X(0)=X(2)=0
$$

This boundary value problem has the solution

$$
k=-\left(\frac{n \pi}{2}\right)^{2} \quad X_{n}(x)=a_{n} \sin \frac{n \pi}{2} x \quad n=1,2,3, \ldots
$$

Substituting the values of k into the equation for $T(t)$ leads to

$$
T^{\prime}+\frac{n^{2} \pi^{2}}{16} T=0
$$

which has the solution $T_{n}(t)=c_{n} e^{-\frac{n^{2} \pi^{2} t}{16}}, n=1,2,3, \ldots$
We now have the solutions

$$
u_{n}(x, t)=A_{n} \sin \frac{n \pi}{2} x e^{-\frac{n^{2} n^{2} t}{16}} \quad n=1,2,3, \ldots
$$

Since the boundary conditions and the equation are linear and homogeneous, it follows that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{2} x e^{-\frac{n^{2} \pi^{2} t}{16}}
$$

satisfies the PDE and the boundary conditions. Since

$$
u(x, 0)=-3 \sin \frac{\pi x}{2}+23 \sin \pi x-4 \sin 2 \pi x=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{2} x .
$$

Matching the cosine terms on both sides of this equation leads to
$A_{1}=-3 \quad A_{2}=23$ and $A_{4}=-4$. All of the other constants must be zero, since there are no sine terms on the left to match with them. Thus

$$
u(x, t)=-3 \sin \frac{\pi x}{2} e^{-\frac{\pi^{2}}{16} t}+23 \sin \pi x e^{-\frac{\pi^{2}}{4} t}-4 \sin 2 \pi x e^{-\pi^{2} t}
$$

