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Introduction to Power Series

Please note that there is material on power series at Visual Calculus. Some of this material was used as
part of the presentation of the topics that follow.

What is a Power Series?
Recall that the geometric series Z ar" converges to
n=0
take the ratio 7 to be a variable x. In particular, the geometric series

a
1-r

provided |r| < 1. In this section we will

Zax” =a+ax+ax*+ax’+ -

n=0
is an example of a power series. It converges on the interval —1 < x < 1, which we say is centered at 0
and has radius 1. All this will be generalized in this section.

Definition A power series is a series of the form

Slx) = ch(x— a)" =co+cix—a)+c(x—a) +cs(x—a)’ + -
n=0
where a,cq,c1,c2, ... are constants. The numbers ¢, are called the coefficients of the
series and the number a is called the center of the series. We also say that the series is
expanded about x = a and that the n'"-order term is ¢, (x — a)".

Remark In the 0™-order term co(x — a)° = ¢ we follow the convention that (x — a)° = 1,
even when x = q, in spite of the fact that 0° is normally undefined. All the remaining
terms go to 0 when x = q, since (a —a)" = 0" = 0 for n # 0. Therefore S(a) = co.

Remark Very often we consider power series centered at x = 0 which have the simpler form
o0
Zc,,x” =co+cix+caxt+ce3xd+ -
n=0

Example For the series
® 2
23(”2;,,1)(%5)" =346(r=5)+ 2L (x=5)" +6(x=5)"+ -
n=0
identify the center and the coefficient of the 4™-order term.
3(n+1)*

TR So the

Solution: The center is at x = 5. The coefficient of the n™-order term is ¢, =
coefficient of 4™-order term is
34+ 1)° _ 75
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Exercise For the series

DD 2 (4 4)”

n=0
1. Identify the center.
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2. Identify the coefficient of the 37-order term.
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3. Write out the terms of the series up to 3™-order..........cccoevevvevevereeennnne. <

Radius of Convergence
Recall that the geometric series

o0
Zax" =a+ax+ax*+ax’+ -
n=0
converges on the interval —1 < x < 1, which we say is centered at 0 and has radius 1. For a general
power series, we have:

Theorem (Power Series Convergence Theorem) The convergence of a power series

Six) = ch(x —a)' =co+cix—a)+er(x—a) +es(x—a)’ + -
n=0
is characterized by one of the following three cases:
1. There is a positive number R, called the radius of convergence, such that the
series S(x) converges absolutely on the interval (¢ — R,a + R). The series
may also converge at one, both or neither of the endpoints @ — R and a + R.
2. The series S(x) converges only for x = a. In this case, we say that the radius
of convergence is R = 0.
3. The series S(x) converges for all real numbers x. In this case, we say that
the radius of convergence is R = .

o0

Note that a Power Series always converges for x = a, sinceatx = a »_c,x" = co. It may or may not
n=0

converge for other values of x.

Remark Notice that the center of the interval (a — R,a + R) is at a, which is the center of the
series. Further, the interval (a — R,a + R) can also be specified by either of the triple
inequalities

a—-R<x<a+R or —-R<x—-a<R

or by the absolute value inequality



x—al <R.

Remark The radius of convergence is usually found by applying the ratio test to the
series.

Example Find the center and radius of convergence of the series Z ( + 1) x-=5)".

n=0
Solution: The center is @ = 5. To find the radius we apply the ratio test
+ 1 n +2 i
a, = i+ 1)° (x—5)" and a,. = (nzm) (x—5)"
: n+ 2) n+ 27 1
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The ratio test says the series converges absolutely if L < 1. In other words, x ; | <lor}x-5] <2,

from which we identify the radius of convergence as R = 2. Thus, the series converges absolutely on
the interval (3,7).

Now you do it:

o0

Exercise Find the center and radius of convergence of the series 2(—3)”(x -) e .. @
n=0

The example and exercise above illustrate the first case in the Power Series Convergence Theorem.
Here are some examples of the other two cases and of the use of the ratio test:

Example Find the center and radius of convergence of the series Z ( ) ——(x+1)"

Solution: The center is @ = —1. To find the radius we apply the ratlg ‘fest:
lanl = Zrpe+ 17 and g | = (}12+"—+i)!|x+ et
L=lim |(|l;:|| = lim (,,2 1) e+ 1|n+l§_r!' |x+11|"
_le( 1)'2|x+1|—11m( )2|x+1|
=0 forallx.

The ratio test says the series converges absolutely if L < 1. Since L = 0, the series converges for all x
and the radius of convergence is R = o.




o0 _ n '
Example Find the center and radius of convergence of the series Z =D ! (x+1)"

T
Solution: The center is again ¢ = —1. To find the radius we apply tl;:oratio test:
| = g—,{pc +1" and |ap| = %pc + 1!
L = fim Ll — i L e 1 2L
_ nggw%m 1] = lim (”; DNMASY
o  forall x exceptx = —1
- { 0 forx = —1.

The ratio test says the series diverges if L > 1 and converges if L < 1. So, the series diverges for all x
except x = —1 and converges for x = —1. Thus, the radius of convergence is R = 0.

And some more exercises:

Exercise Find the center and radius of convergence of the series Z % (x-3)"

n=0
. .9

0
Exercise Find the center and radius of convergence of the series E
n=0

g}, G-1". @ . @

Interval of Convergence

Definition The Power Series Convergence Theorem implies that a power series

S(x) = ch(x— a)" =co+ci(x—a)+e(x—a) +es(x—a)’ + -
n=0
converges on an interval called its interval of convergence. This interval may consist
of a single point [a], the set of all real numbers (—oo,0), or a finite interval which may
be open: (@ — R,a + R), closed: [a — R,a + R], or half open: [a — R,a + R) or
(a—R,a+R].

We have seen that the center a may be read off the series, and the radius R may be determined using the

ratio test (or the root test). It remains to determine the convergence at the endpoints of the interval of
convergence.

Remark It is much more important to be able to determine the radius of convergence than it is

to be able to determine whether the series converges at the endpoints of the interval of
convergence.

Remark You cannot use the ratio test or the root test to determine the convergence at the
endpoints, because these tests fail when L = 1 which is precisely at the endpoints of the



interval of convergence. You must use some other test.

The following three examples illustrate the three cases of an open, closed or half open interval of
convergence.

Example Find the interval of convergence of the series Z 32n (G 1 @ @
n 0

Example Find the interval of convergence of the series Z 32 (G 1 @ @

n
n=0
You try this one first:

Example Find the interval of convergence of the series Z 3 J_ — 1) . .9

n=0

Example For what values of x is the series

z‘”: nx-1D" _ @x-1) 202x - 1)? . 32x—1)°
4" T 4 16 64

n=1
convergent?
We shall use the Ratio Test again.

(}1 + 1)(2x 1)”'*'1 4n

L = lim :
= 471 n2x—1)"

n—0o0

= lim

n—00

2x—1 |
4

For the series to converge we must have L < 1, that is |2x4_—1 | < 1 or equivalently |—x - 7 | < 1.
Thus
lex_1
1< 54 < 1
or
_3 x5
4§52 °%
or finally
_3 3
> <x¥<3
Hence, the series converges if — % <x< % and diverges for x > % and x < —%. The cases when
X = —% and x = % must be tested separately.

When x = —%, then Z n(2x4; D Z n(41411) =" n(-1)", which diverges since the 7 th term of
n=1

this series does not go to zero as n —» .

n=1 n=1

When x = %, then Y n(2x4; D" _ > n(44t) = n, which again diverges. Why?é
n=1

n=1 n=1



Thus this series converges in 3 <2

2 2
R=2.
Exercise Find the interval of convergence and the radius of convergence of

and this is the Interval of Convergence. For this example

0

> G -1y

n=1

Representation of a Functions as Power Series
It is often useful to write a function f{x) as an infinite series.

Functions Defined by Power Series

When a power series converges on an open interval (a — R,a + R) (of finite or infinite length), It
defines a function

o0

Sx) = Zc,,(x—a)" =co+ci(x—a)+cer(x—a)’ +es(x—a)’ + -
n=0

on its interval of convergence.

The only such function we know so far is the sum of the geometric series:

0

1 _ _ 243 4

T—x —z;x”—l+x+x +x° + for |x| < 1
=

Operations on Power Series — Substitution

The easiest way to construct a new function is to make a substitution for the variable. In general, you
can replace the variable in a series by any expression which leaves it a power series. You must make
the same substitution in the interval of convergence.

Example Find the power series expansion for 1 +1 o centered about x = 0, and find its interval of
X
convergence.
Solution: Into the geometric series
N - 243 4 ..
T—» —Zx”—l+x+x +x° + for |x| < 1

n=0
substitute x = —47>. Remember to also make the substitution in the interval of convergence:

1 N ]
Trar ~ 2040
n=0

= 1+ (—42) + (—42)° + (—42)° + -« for|-42| < 1
Next, replace ¢ by x:



1 - "
A - 24
n=0
= 1+ (—4x2) + (—4x2)* + (—4x2)’ + .-~ for |-4x2| < 1

Finally, simplify the series and the interval of convergence:

0

1 n..2n
A - 20O

n=0
= 1 —4x? + 16x* — 64x5 + - for x| < %
This is the power series and it converges on the interval (—%, % )

Remark One normally does the first two steps above at the same time by doing the
replacement x ~ —4x? and never mentioning the variable . However, if that is at all
confusing, do it in two steps.

1
3—x

interval Of CONVETZENCE.......cccviiiiiieriiieciie et crree e I

Exercise Find the power series expansion for centered about x = 2, and find its




