Ma 530

Linear Differential Equations

We shall now begin a detailed study of the second-order linear differential equation

a(x)y'' + b(x)y' + c(x)y = f(x)

Fundamental theory of second-order linear equations

The following theorem gives information concerning the existence of solutions of second-order linear differential equations. We shall accept it as valid without proof.

Theorem 1: Consider the Initial Value Problem

D.E.
$$a(x)y'' + b(x)y' + c(x)y = f(x)$$

I.C. $y(x_0) = y_0$ $y'(x_0) = y'_0$

If a(x), b(x), c(x), f(x) are all continuous functions in the interval *I*, where $x_0 \in I$ and $a(x) \neq 0$ for all *x* in *I*, then the IVP possesses a unique solution. This solution has a continuous derivative and is defined throughout *I*.

Example

D.E.
$$a(x)y'' + b(x)y' + c(x)y = 0$$
 Homogeneous Equation
I.C. $y(x_0) = 0$ $y'(x_0) = 0$

One solution is $y(x) \equiv 0$. Theorem 1 \Rightarrow only solution is $y \equiv 0$.

We shall assume from now on that a, b, c, and f are continuous in a common interval I and $a(x) \neq 0$ in I so that Theorem 1 holds.

Notation: Let

$$L[y] \equiv a(x)y'' + b(x)y' + c(x)y.$$

Then L[2] = 2c(x)

L[3x] = 3b(x) + 3xc(x).

With this notation the second order differential equation a(x)y'' + b(x)y' + c(y)y = f(x) can be written as L[y] = f(x). The homogeneous case is when $f(x) = 0 \Rightarrow L[y] = 0$. This is called the homogeneous equation. If $f(x) \neq 0 \Rightarrow$ a nonhomogeneous equation.

L[y] is called a linear operator because it has the following property.

Theorem 2:

$$L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2]$$

where y_1 and y_2 are any twice differential functions and c_1 and c_2 are any constants. Proof:

$$L[c_1y_1 + c_2y_2] = a(x) (c_1y_1 + c_2y_2)'' + b(x) (c_1y_1 + c_2y_2)' + c(x) (c_1y_1 + c_2y_2)$$

= $a(x) (c_1y_1'' + c_2y_2'') + b(x) (c_1y_1' + c_2y_2') + c(x) (c_1y_1 + c_2y_2)$
= $c_1[a(x)y_1'' + b(x)y_1' + c(x)y_1] + c_2[a(x)y_2'' + b(x)y_2' + c(x)y_2]$

 $\Rightarrow L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2]$

Properties of solutions of second order equations.

Theorem 3: If $y_1(x)$ and $y_2(x)$ are solutions of the homogeneous equation L[y] = 0, then $y = c_1y_1(x) + c_2y_2(x)$ is also a solution. Proof. $L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2]$ from above. Since y_1 is a solution of $L[y] = 0 \Rightarrow L[y_1] = 0$. Similarly $L[y_2] = 0$. Hence $L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2] = 0 + 0 = 0 \Rightarrow y = c_1y_1 + c_2y_2$ is also a solution of L(y) = 0.

Example y'' - 9y = 0 e^{3x} and e^{-3x} are solutions. Theorem $3 \Rightarrow y = c_1 e^{3x} + c_2 e^{-3x}$ is also a solution.

Remark. We desire to be able to find the general solution of L[y] = 0. The above theorem tells us that if y_1 and y_2 are solutions, then $c_1y_1 + c_2y_2$ is a solution, but it does not tell us that this is the general solution. In order to know when one has a general solution it is necessary to introduce the concept of the linear independence of two functions.

Definition: Two functions $y_1(x)$ and $y_2(x)$ are called linearly dependent (LD) in an interval *I* if it is possible to find two constants c_1 and c_2 , not both zero, so that

$$c_1y_1(x) + c_2y_2(x) = 0 \quad \forall x \in I.$$

Two functions are called linearly independent (LI) if they are not linearly dependent, i.e., if

$$c_1y_1(x) + c_2y_2(x) = 0 \quad \forall x \in I \Rightarrow c_1 = c_2 = 0.$$

Remark. If two functions are *LD* in $I \Rightarrow$ one of the functions is equal to a constant times the other in *I*.

Example (a) x, 2x are *LD* in any interval *I*, since

$$(-2)x + (1) \ 2x = 0 \quad \forall x \in I$$

(b) x^2 , x are LI in any interval I, since

$$c_1 x^2 + c_2 x = 0 \quad \forall x \in I$$

is impossible because this equation has at most two real roots in *I*. Thus, we must have $c_1 = c_2 = 0$.

(c) Two functions are *LD* if one of them is the zero function. If $y_1 = 0$, then

$$c_1y_1 + 0 \cdot y_2 = c_10 + 0 \cdot y \equiv 0 \ \forall x \in I$$

and any $c_1 \neq 0$.

(d) If $\lambda_1 \neq \lambda_2$, then $e^{\lambda_1 x}$ and $e^{\lambda_2 x}$ are LI for if

$$c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} \equiv 0$$

 \Rightarrow

$$c_1 \equiv -c_2 e^{(\lambda_2 - \lambda_1)x}.$$

But c_1 is a constant and therefore the last equation $\Rightarrow \lambda_1 = \lambda_2$, which is a contradiction.

Facts from algebra needed in the proofs of the next theorems.

1.
$$\begin{pmatrix} d_1x + d_2y = d_3 \\ e_1x + e_2y = e_3 \end{pmatrix}$$
 has a unique solution $\Leftrightarrow \begin{vmatrix} d_1 & d_2 \\ e_1 & e_2 \end{vmatrix} \neq 0$
If $d_2 = e_2 = 0$ and $det \neq 0 \Rightarrow x = y = 0$ is the only solution

If $d_3 = e_3 = 0$ and $det \neq 0 \Rightarrow x = y = 0$ is the only solution.

2.
$$\begin{pmatrix} d_1x + d_2y = 0 \\ e_1x + e_2y = 0 \end{pmatrix}$$
 has nontrivial solution. $\Leftrightarrow \begin{vmatrix} d_1 & d_2 \\ e_1 & e_2 \end{vmatrix} = 0$

Definition: The Wronskian of two differentiable functions y_1 and y_2 is defined to be

$$W[y_1(x), y_2(x)] = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = y_1(x)y'_2 \quad (x) - y'_1(x)y_2(x).$$

Theorem 4. If $W[y_1(x), y_2(x)]$ is different from zero for at least one point in an interval *I*, then $y_1(x)$ and $y_2(x)$ are *LI* in *I*.

Proof. Suppose y_1 , y_2 are *LD*. Then \exists constants c_1, c_2 , not both zero, such that

$$\left.\begin{array}{c} c_{1}y_{1}(x)+c_{2}y_{2}(x)\equiv 0\\ c_{1}y_{1}'(x)+c_{2}y_{2}'(x)\equiv 0\end{array}\right\}$$

By assumption these two equations have a nontrivial solution c_1 , c_2 at each point x in I. Therefore the determinant of the coefficients (by 2) must be zero for each x. But the determinant of coefficients $= W[y_1(x), y_2(x)]$ and $W \neq 0$ for at least one point in I. $\Rightarrow y_1$ and y_2 are not LD.

Corollary. If y_1, y_2 are LD in $I \Rightarrow W[y_1(x), y_2(x)] \equiv 0$ in I.

Remark. Converse of Theorem 4 is not true in general, i.e., there exist functions which are LI in an interval I and whose Wronskian is $\equiv 0$ in I.

However, if y_1 and y_2 are solutions of L[y] = 0 then the following converse holds.

Theorem 5. If $y_1(x)$, $y_2(x)$ are LI solutions of L[y] = 0 in I, then $W[y_1(x), y_2(x)]$ is never zero in I.

Proof. If $W[y_1(x), y_2(x)] = 0$ for some $x_0 \in I$, then the equations

$$c_1 y_1(x_0) + c_2 y_2(x_0) = 0$$

$$c_1 y'_1(x_0) + c_2 y'_2(x_0) = 0$$

have a nontrivial solution, i.e. $\exists c_1, c_2$ not both zero satisfying the system. For these values of c_1 and c_2 the function $y(x) = c_1y_1(x) + c_2y_2(x)$ is a solution of L[y] = 0 and satisfies the initial conditions $y(x_0) = 0, y'(x_0) = 0$. However, by Theorem 1 the only solution of this problem is $y(x) \equiv 0 \Rightarrow c_1y_1(x) + c_2y_2(x) \equiv 0 \forall x \in I \Rightarrow y_1, y_2$ are *LD*. Contradiction! $\Rightarrow W[$] is never zero in *I*.

Corollary. The Wronskian of 2 solutions of L[y] = 0 is either identically zero (if solutions are LD) or never zero (if solutions are LI).

Theorem 6. If $y_1(x)$ and $y_2(x)$ are *LI* solutions of L[y] = 0, then $y = c_1y_1 + c_2y_2$ is the general solution of L[y] = 0.

Example e^{3x} and e^{-3x} are LI solutions of $y'' - 9y = 0 \Rightarrow$ general solution is $y = c_1 e^{3x} + c_2 e^{-3x}$.

Theorem 6 tells us that the problem of finding the general solution of L[y] = 0 is reduced to finding any two linearly independent solutions.

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Question: Do two *LI* solutions of L[y] = 0 actually exist? The answer is given in the affirmative by the next theorem.

Theorem 7. \exists two linear independent solutions of L[y] = 0.

Proof. Let $y_1(x)$ be the unique solution of L[y] = 0 with initial conditions $y_1(x_0) = 1$, $y'_1(x_0) = 0$, and $y_2(x)$ be the unique solution of L[y] = 0 with initial conditions $y_2(x_0) = 0$, $y'_2(x_0) = 1$. Note that y_1 and y_2 exist by Theorem 1. Now y_1 and y_2 are LI by Theorem 5 since

$$W[y_1(x_0), y_2(x_0)] = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

Theorem 8. If y_p is any particular solution of the nonhomogeneous equation L[y] = f(x) and y_h is the general solution of the homogeneous equation L[y] = 0, then the general solution of L[y] = f(x) is $y = y_p + y_h$.

Example Solve $y'' - 9y = e^x$ We know that $y_h = c_1 e^{3x} + c_2 e^{-3x}$. $y_p = ?$ Assume $y_p = Ae^x$

 $\Rightarrow Ae^{x} - 9Ae^{x} = e^{x} \Rightarrow -8A = 1 \qquad A = -\frac{1}{8} \Rightarrow y_{p} = -\frac{1}{8} e^{x}$ $\Rightarrow y = c_{1}e^{3x} + c_{2}e^{-3x} - \frac{1}{8}e^{x}$ is the general solution.

Theorem 9. Principle of superposition. If y_1 is a solution of $L[y] = f_1$ and y_2 is a solution of $L[y] = f_2$, then $y = y_1 + y_2$ is a solution of $L[y] = f_1 + f_2$.

Example Solve $y'' - 9y = e^x + 5$. Before we found that $y = -\frac{1}{8}e^x$ was a particular solution of $y'' - 9y = e^x$. To find

a particular solution of y'' - 9y = 5 assume $y \equiv k \Rightarrow k = -\frac{5}{9}$. The general solution of equation is therefore

$$y = c_1 e^{3x} + c_2 e^{-3x} - \frac{1}{8} e^x - \frac{5}{9}.$$

Extension: If for i = 1, 2, ..., n, y_i is a solution of $L[y] = f_i$, then $\sum_{i=1}^n y_i$ is a solution of $L[y] = \sum_{i=1}^n f_i$.

Complex-valued Solutions

A complex-valued function f of a real variable x is a function of the form

$$f(x) = u(x) + iv(x)$$

where u(x) and v(x) are real functions and $i = \sqrt{-1}$.

Definition. If f = u + iv, u, v real functions, then f is continuous if u and v are continuous; f is differential if u and v are differential and

$$f'(x) = u'(x) + iv'(x).$$

Example a) $f(x) = 3x + ix^2 \Rightarrow f'(x) = 3 + 2ix$

b)
$$\frac{d}{dx}(3x+ix^2)^2 = 2(3x+ix^2)(3+2ix) = 2(9x-2x^3+9ix^2)$$

c) Let

$$E(x) = e^{ax}(\cos bx + i\sin bx)$$

Then

$$E'(x) = ae^{ax}(\cos bx + i\sin bx) + e^{ax}(-b\sin bx + bi\cos bx)$$

= $e^{ax}[a(\cos bx + i\sin bx) + bi(\cos bx + i\sin bx)]$
= $e^{ax}[a + bi](\cos bx + i\sin bx).$

Hence

$$E'(x) = (a + bi)E(x).$$

Based on this we define the complex exponential via

 $e^{(a+bi)x} = e^{ax}\cos bx + ie^{ax}\sin bx$

 $a = 0 \Rightarrow$

$$e^{bix} = \cos bx + i \sin bx.$$

This is called Euler's formula. Hence

$$e^{(a+bi)x} = e^{ax} \cdot e^{bix}.$$

Example $v = e^{ix}$ satisfies v'' + v = 0 since $v' = ie^{ix}$ $v'' = -e^{ix} \Rightarrow -e^{ix} + e^{ix} = 0$.

The theorem below gives the connection between real and complex solutions of a linear differential equation with real coefficients.

Theorem 1. Consider the differential equation

$$a(x)y'' + b(x)y' + c(x)y = 0$$

where a(x), b(x), and c(x) are real functions. The complex function y = u + iv, where u and v are real, is a solution of this equation $\Leftrightarrow u$ and v are solutions.

Proof. As before we denote the equation by L[v] = 0. It is easily shown that L[v] = L[u] + iL[v] where L[u] and L[v] are real. Therefore y is a solution $\Leftrightarrow L[y] = L[u] + iL[v] = 0$. Since a complex number is zero \Leftrightarrow its real and imaginary parts are zero, $\Rightarrow L[v] = 0 \Leftrightarrow L[u] = 0$ and $L[v] = 0 \Leftrightarrow u$ and v solutions.

Example $y = e^{ix}$ is a solution of y'' + y = 0. Since $e^{ix} = cosx + isinx \Rightarrow cosx$ and sinx are solutions. This is easily verified.

Homogeneous Linear Equations with Constant Coefficients

We shall now discuss the problem of solving the homogeneous equation

$$ay'' + by' + cy = 0$$
 (*)

where *a*, *b* and *c* are real constants and $a \neq 0$.

Possible candidates for a solution are x and powers of x. These are no good. $\ln x$ is also no good. We shall try $e^{\lambda x}$. If $y = e^{\lambda x}$ is a solution of (*) $\Rightarrow a\lambda^2 e^{\lambda x} + b\lambda e^{\lambda x} + ce^{\lambda x} = e^{\lambda x} (a\lambda^2 + b\lambda + c) = 0$. This is to be a solution $\forall x \Rightarrow a\lambda^2 e^{\lambda x} + b\lambda e^{\lambda x} + ce^{\lambda x} = e^{\lambda x} (a\lambda^2 + b\lambda + c) = 0$.

$$a\lambda^2 + b\lambda + c = 0.$$

This equation for λ is called the *auxiliary* or *characteristic* equation.

It has the solution $\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{\Delta}}{2a}$ $\Delta = b^2 - 4ac$

There are three possibilities:

(1) $\Delta > 0$ two real, distinct roots

(2) $\Delta = 0$ one real root, repeated

(3) $\Delta < 0$ two imaginary roots which are the complex conjugates of each other, i.e. if $\lambda_1 = \alpha + i\beta \Rightarrow \lambda_2 = \alpha - i\beta$

We shall now discuss the three cases in detail.

Case 1. $\Delta > 0$. There are two real distinct roots λ_1, λ_2 , where $\lambda_1 \neq \lambda_2$

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad \lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

 $\Rightarrow e^{\lambda_1 x}$ and $e^{\lambda_2 x}$ are both solutions of the differential equation. These functions are LI, \Rightarrow general solution is

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}.$$

where λ_1 and λ_2 are both real and $\lambda_1 \neq \lambda_2$.

Example 2y'' - y' - 3y = 0

 $\Rightarrow 2\lambda^2 - \lambda - 3 = 0$ or $(2\lambda - 3)(\lambda + 1) = 0 \Rightarrow \lambda_1 = -1 \quad \lambda_2 = \frac{3}{2} \quad \Rightarrow y = c_1 e^{-x} + c_2 e^{+\frac{3}{2}x} .$

Case 2. $\Delta = 0$. There is one real, repeated root $\lambda_1 = -\frac{b}{2a} \Rightarrow e^{\lambda_1 x}$ is a solution. We need a second LI solution. To find it we shall use the method of variation of parameters. We seek a solution of the form

 $y = v(x)e^{\lambda_1 x},$

where v(x) is a function to be determined. Now

$$y' = v'e^{\lambda_1 x} + v\lambda_1 e^{\lambda_1 x}$$

and

$$y'' = v''e^{\lambda_1 x} + 2v'\lambda_1e^{\lambda_1 x} + v\lambda_1^2e^{\lambda_1 x}$$

⇒

$$av''(x)e^{\lambda_1 x} + 2av'\lambda_1e^{\lambda_1 x} + av\lambda_1^2e^{\lambda_1 x} + bv'e^{\lambda_1 x} + bv\lambda_1e^{\lambda_1 x} + cve^{\lambda_1 x} = 0$$

 \Rightarrow

$$av'' + \underbrace{(2a\lambda_1 + b)}_{v}v' + \underbrace{(a\lambda_1^2 + b\lambda_1 + c)}_{v}v = 0$$

 $\Rightarrow v'' = 0 \text{ (why?)} \Rightarrow$

 $v = c_1 + c_2 x$

$$y = ve^{\lambda_1 x} = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$$

is a solution of the differential equation in the case where there exists one repeated root λ_1 . Since $e^{\lambda_1 x}$ and $x e^{\lambda_1 x}$ are LI \Rightarrow this is the general solution.

Example y'' - 4y' + 4y = 0 $\lambda^2 - 4\lambda + 4 = 0$ or $(\lambda - 2)^2 = 0 \Rightarrow$ one real, repeated root $\lambda = 2. \Rightarrow$

$$y = c_1 e^{2x} + c_2 x e^{2x}.$$

Case 3. $\Delta < 0$ 2 complex roots

 \Rightarrow

 \Rightarrow

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = -\frac{b}{2a} \pm \frac{i\sqrt{4ac - b^2}}{2a}$$
$$\lambda_1 = a + i\beta = -\frac{b}{2a} + i\sqrt{\frac{c}{a} - \frac{b^2}{4a^2}}$$

$$\lambda_2 = \alpha - i\beta = -\frac{b}{2a} - i\sqrt{\frac{c}{a} - \frac{b^2}{4a^2}}$$

where α and β are real numbers.

 $\Rightarrow \text{ two complex solutions. } e^{(\alpha+i\beta)x} = e^{\alpha x}(\cos\beta x + i\sin\beta x) \text{ and } e^{(\alpha-i\beta)x} = e^{\alpha x}(\cos\beta x - i\sin\beta x)$

Since the differential equation has <u>real</u> coefficients, \Rightarrow real and imaginary parts of above are solutions, i.e.,

 $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are both solutions in this case. These are LI functions. \Rightarrow the solution is

$$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$$
 where A, B real constants

Example

$$32y'' - 40y' + 17y = 0$$

$$32\lambda^2 - 40\lambda + 17 = 0$$

$$\lambda = \frac{40 \pm \sqrt{1600 - 4(32)(17)}}{2(32)} = \frac{40 \pm \sqrt{1600 - 2176}}{2(32)} = \frac{40 \pm i\sqrt{576}}{2(32)} = \frac{5 \pm \sqrt{9}}{8} = \frac{5}{8} \pm \frac{3}{8}i$$
Thus

Thus

$$\lambda_1 = \frac{5}{8} + \frac{3}{8}i$$
 and $\lambda_2 = \frac{5}{8} - \frac{3}{8}i$

⇒

$$y = e^{\frac{5}{8}x} (A\cos\frac{3}{8}x + B\sin\frac{3}{8}x)$$

Example Write down a second order homogeneous linear differential equation with real constant coefficients whose solutions are

$$\frac{1}{2}e^{-2x}\cos 3x \text{ and } \frac{3e^{-2x}}{4}\sin 3x.$$

$$\Rightarrow \alpha = -2 \quad \beta = 3 \text{ so that } \lambda_1 = -2 + 3i \text{ and } \lambda_2 = -2 - 3i.$$

$$\Rightarrow \qquad p(\lambda) = [\lambda - (-2 + 3i)][\lambda - (-2 - 3i)]$$

$$= [\lambda + 2 - 3i][\lambda + 2 + 3i]$$

$$= \lambda^2 + (2 + 3i)\lambda + (2 - 3i)\lambda + 4 + 9$$

$$= \lambda^2 + 4\lambda + 13$$
(Check: $\lambda = \frac{-4 \pm \sqrt{16 - 4(1)(13)}}{2} = \frac{-4 \pm bi}{2} = -2 \pm 3i$)
$$\Rightarrow \text{ equation is}$$

y'' + 4y' + 13y = 0

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Undetermined Coefficients

Let us now consider the problem of solving

$$ay'' + by' + cy = f(x) \quad a \neq 0 \quad (*)$$

a, *b*, *c* real <u>constants</u>. We know that the general solution is $y = y_h + y_p$, where

 y_h = the solution of the homogeneous equation

and

 y_p = a particular solution of the equation

We know how to find y_h . We shall now discuss ways of finding y_p for certain special functions f(x).

1. $f(x) = Ke^{\alpha x}$ K constant, α constant.

Thus we seek y_p for

$$ay'' + by' + cy = Ke^{\alpha x}.$$

Due to the exponential form of f(x) we seek y_p of the form

 $y_p = Ae^{\alpha x}$

A = ? The differential equation (*) \Rightarrow

$$(a\alpha^2 + b\alpha + c)Ae^{\alpha x} = Ke^{\alpha x}$$

 \Rightarrow

$$A = \frac{K}{a\alpha^2 + b\alpha + c}$$

 \Rightarrow

$$y_p = \frac{Ke^{\alpha x}}{a\alpha^2 + b\alpha + c}$$

The above is a particular solution provided the denominator is non-zero. Note that the denominator is $p(\lambda) = a\lambda^2 + b\lambda + c$ with $\lambda = \alpha$. This is the characteristic polynomial with $\lambda = \alpha$.

If $p(\alpha) = 0$, \Rightarrow we do not have a y_p . However, $p(\alpha) = 0 \Rightarrow \alpha$ is a root of characteristic equation. $\Rightarrow e^{\alpha x}$ is solution of the homogeneous equation, and therefore $Ae^{\alpha x}$ cannot be a solution of the nonhomogeneous equation. If $p(\alpha) = 0$, we try

$$y_p = Axe^{\alpha}$$

 $\Rightarrow y'_p = A\alpha x e^{\alpha x} + Ae^{\alpha x} \text{ and } y''_p = A\alpha^2 x e^{\alpha x} + A\alpha e^{\alpha x} + A\alpha e^{\alpha x} = A\alpha^2 x e^{\alpha x} + 2A\alpha e^{\alpha x}$ Substitution into the differential equation (*) \Rightarrow

$$Axe^{\alpha x}[a\alpha^{2} + b\alpha + c] + Ae^{\alpha x}[2a\alpha + b] = Ke^{\alpha x}$$

 \Rightarrow

$$A = \frac{K}{2a\alpha + b}$$

 \Rightarrow

$$y_p = \frac{Kxe^{\alpha x}}{2a\alpha + b}$$
 if $p(\alpha) = 0$

provided, of course, that $2a\alpha + b \neq 0$. Note that $p(\lambda) = a\lambda^2 + b\lambda + c \Rightarrow p'(\lambda) = 2a\lambda + b \Rightarrow$

$$y_p = \frac{Kxe^{\alpha x}}{p'(\alpha)}$$
 when $p(\alpha) = 0$ and $p'(\alpha) \neq 0$

If $p(\alpha) = 0$ and $p'(\alpha) = 0 \Rightarrow$ above y_p is no good. But $p'(\alpha) = 0 \Rightarrow 2a\alpha + b = 0 \Rightarrow \alpha = -\frac{b}{2a}$. $\Rightarrow \alpha$ is a double (repeated) root of $a\lambda^2 + b\lambda + c = 0$. Hence both $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions of the homogeneous equation if $p(\alpha) = p'(\alpha) = 0$, and these cannot therefore be solutions of the nonhomogeneous equation. If $p(\alpha) = p'(\alpha) = 0$ we try

$$y_p = Ax^2 e^{\alpha x}$$
.

Differentiating and substituting into the equation leads to \Rightarrow

$$A = \frac{K}{2a} = \frac{K}{p''(\alpha)}$$

since $p'(\lambda) = 2a\lambda + b \implies p''(\lambda) = 2a$ Thus

$$y_p = \frac{K}{p''(\alpha)} x^2 e^{\alpha x}$$
 if $p(\alpha) = p'(\alpha) = 0$.

 $p''(\alpha) \neq 0$ since $a \neq 0$ by assumption.

Summary: A particular solution of $L[y] = ke^{\alpha x}$ is $y_p = \frac{Ke^{\alpha x}}{p(\alpha)}$ if $p(\alpha) \neq 0$ $y_p = \frac{Kxe^{\alpha x}}{p'(\alpha)}$ if $p(\alpha) = 0, p'(\alpha) \neq 0$ $y_p = \frac{K}{p''(\alpha)}x^2e^{\alpha x}$ if $p(\alpha) = p'(\alpha) = 0$

Example (a) $y'' - 5y' + 4y = 2e^x$ Homogeneous solution: $p(\lambda) = \lambda^2 - 5\lambda + 4 = (\lambda - 4)(\lambda - 1) \Rightarrow \lambda = 4, 1 \Rightarrow y_h = c_1 e^x + c_2 e^{4x}$ Now to find a particular solution for $2e^x$. $\Rightarrow \alpha = 1$ p(1) = 0 Since $p'(\lambda) = 2\lambda - 5$ $p'(1) = 2 - 5 = -3 \neq 0$ \Rightarrow

$$y_p = \frac{kxe^{\alpha x}}{p'(\alpha)} = \frac{2xe^x}{-3}$$

 \Rightarrow

$$y = y_h + y_p = c_1 e^x + c_2 e^{4x} - \frac{2}{3} x e^x$$

(b) $y'' - 5y' + 4y = 3 + 2e^{x}$ $y_{h} = c_{1}e^{x} + c_{2}e^{4x}$ $p(\lambda) = \lambda^{2} - 5\lambda + 4$ Consider y'' - 5y' + 4y = 3 $3 = ke^{\alpha x}$ with k = 3 $\alpha = 0$ $p(0) = 4 \neq 0 \Rightarrow y'_{p} = \frac{3}{4}$ \Rightarrow $y = c_{1}e^{x} + c_{2}e^{4x} + \frac{3}{4} - \frac{2}{3}xe^{x}$

2. $f(x) = k \cos \beta x$ or $f(x) = k \sin \beta x$

For example, we seek a particular solution of

$$L[y] = ay'' + by' + cy = k\cos\beta x$$

We shall use the complex exponential to solve for y_p . Recall

$$ke^{i\beta x} = k\cos\beta x + ik\sin\beta x.$$

Hence we consider also the equation

$$L[v] = av'' + bv' + cv = k\sin\beta x$$

By multiplying this last equation by *i* and adding the result to $L[y] \Rightarrow$ $L[y] + iL[v] = k \cos \beta x + ik \sin \beta x = ke^{i\beta x}.$ But iL[v] = L[iv], since *L* is linear. Hence if we let $w = y + iv \Rightarrow$ the equation $aw'' + bw' + cw = ke^{i\beta x}$

or

$$L[y] + iL[v] = L[y] + L[iv] = L[y + iv] = L[w] = ke^{i\beta x}$$

and therefore we have the complex equation $L[w] = ke^{i\beta x}$ for w. To find w_p for this we use the formulas derived above. Then we find y_p from $y_p = \text{Re } w_p = \text{real part of } w_p$. For $f(x) = k \sin\beta x$ we have $y_p = \text{Im } w_p = \text{imaginary part of } w_p$.

Example Find a particular solution of

 $y'' + 7y' + 12y = 3\cos 2x$ Let $w = y + iv \Rightarrow$ find w_p for $w'' + 7w' + 12w = 3e^{2ix}$. Now $p(\lambda) = \lambda^2 + 7\lambda + 12 \Rightarrow$ $p(\alpha) = p(2i) = (2i)^2 + 7(2i) + 12 = -4 + 14i + 12 \neq 0$ \Rightarrow

$$w_p = \frac{3e^{2ix}}{p(2i)} = \frac{3e^{2ix}}{8+14i}.$$

 $y_p = \operatorname{Re} w_p = ?$

To find y_p we shall rationalize the denominator.

$$w_{p} = \frac{3e^{2ix}}{8+14i} \times \frac{8-14i}{8-14i}$$

= $\frac{3(8-14i)e^{2ix}}{64+196}$
= $\frac{3(8-14i)e^{2ix}}{260}$
= $\frac{3}{260}(8-14i)[\cos 2x + i\sin 2x]$
= $\frac{3}{260}[8\cos 2x + 14\sin 2x] + \frac{3}{260}i[8\sin 2x - 14\cos 2x]$

Thus

$$y_p = \operatorname{Re} w_p = \frac{3}{260} [8\cos 2x + 14\sin 2x]$$

Example

$$y'' + 4y = 3\sin 2x$$

 \Rightarrow

 $w'' + 4w = 3e^{2ix}$ $p(\lambda) = \lambda^2 + 4 \implies p(2i) = 0 \text{ and } p'(\lambda) = 2\lambda. \text{ Now } p'(2i) \neq 0$ \Rightarrow

$$w_p = \frac{3xe^{2ix}}{p'(2i)} = \frac{3xe^{2ix}}{4i} \times \frac{i}{i} = -\frac{3}{4}ixe^{2ix} = -\frac{3}{4}ix[\cos 2x + i\sin 2x]$$
$$= -\frac{3}{4}xi\cos 2x + \frac{3}{4}x\sin 2x$$

$$\Rightarrow$$

$$y_p = \operatorname{Im} w_p = -\frac{3}{4}x\cos 2x$$

Example $y'' + 7y' + 12y = 3\cos 2x$ again. Let $y_p = A \cos 2x + B \sin 2x$ $y'_p = -2A \sin 2x + 2B \cos 2x$ $y''_p = 4A \cos 2x - 4B \sin 2x$ \Rightarrow $-4A \cos 2x - 4B \sin 2x - 14A \sin 2x + 14B \cos 2x + 12A \cos 2x + 12B \sin 2x = 3 \cos 2x$ \Rightarrow

$$\cos 2x[8A + 14B] + \sin 2x[8B - 14A] = 3\cos 2x$$

 \Rightarrow

$$8A + 14B = 3 \ 8B - 14A = 0 \Rightarrow B = \frac{7}{4}A$$

 $8A + \frac{7}{2}(7)A = 3 \quad 8A + \frac{49}{2}A = 3 \Rightarrow \frac{16+49}{2}A = 3 \quad A = \frac{6}{65} \Rightarrow B = \frac{21}{130}$ $\Rightarrow y_p = \frac{6}{65}\cos 2x + \frac{21}{130}\sin 2x \text{ as before.}$

III. $f(x) = B_0 + B_1 x + \cdots + B_n x^n$ polynomial. We want y_p for

$$ay'' + by' + cy = B_0 + B_1x + \cdots + B_nx^n$$

We try a solution of the form

$$y_p = Q_n(x) = A_0 + A_1 x + \cdots + A_n x^n$$

If $p(0) \neq 0$, then when we substitute Q_n into the equation we will get a polynomial of degree *n* and we can determine $A'_k s$ by equating coefficients of like powers of *x*. If p(0) = 0, but $p'(0) \neq 0$ use $y_p = xQ_n(x)$. Similarly if p(0) = p'(0) = 0 take $y_p = x^2Q_n(x)$. **Example**

$$y'' + 3y' = 2x^2 + 3x$$

In this example the right hand side is a polynomial of degree 2. $p(\lambda) = \lambda^2 + 3\lambda$ so p(0) = 0. $p'(\lambda) = 2\lambda + 3$ and $p'(0) \neq 0$ \Rightarrow

$$y_p = xQ_2(x) = x(A_0 + A_1x + A_2x^2) = A_0x + A_1x^2 + A_2x^3$$

 \Rightarrow

$$y'_p = A_0 + 2A_1x + 3A_2x^3 \Rightarrow y''_p = 2A_1 + 6A_2x$$

The differential equation \Rightarrow

$$2A_1 + 6_2x + 3A_0 + 6A_1x + 9A_2x^2 = 2x^2 + 3x$$

 \Rightarrow

$$2A_1 + 3A_0 = 0 \text{ and } 6A_2 + 6A_1 = 3 \text{ and } 9A_2 = 2.$$

$$\Rightarrow A_2 = \frac{2}{9} \quad A_2 + A_1 = \frac{1}{2} \quad \frac{2}{9} + A_1 = \frac{1}{2} \Rightarrow A_1 = \frac{1}{2} - \frac{2}{9} = \frac{9-4}{18} = \frac{5}{18}$$

$$2\left(\frac{5}{18}\right) + 3A_0 = 0 \quad A_0 = -\frac{10}{18(3)} = -\frac{5}{27} \Rightarrow$$

$$y_p = -\frac{5}{27}x + \frac{5}{18}x^2 + \frac{2}{9}x^3$$

IV. $f(x) = (B_0 + B_1 x + \cdots + B_n x^n) e^{\alpha x}$

We want a particular solution for the DE

$$ay'' + by' + cy = (B_0 + B_1x + \cdots + B_nx^n)e^{\alpha x}$$

We seek a solution of the form

$$y_p = Q_n(x)e^{\alpha x} \text{ if } p(\alpha) \neq 0$$

$$y_p = xQ_n(x)^{\alpha x} \text{ if } p(\alpha) = 0, \text{ and } p'(\alpha) \neq 0$$

$$y_p = x^2Q_n(x)e^{\alpha x} \text{ if } p(\alpha) = p'(\alpha) = 0$$

Example These examples are video slide shows. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.

Variation of Parameters

Let us now consider the non-homogeneous equation

$$a(x)y'' + b(x)y' + c(x)y = f(x)$$

where a, b, c, f are continuous *functions* in some internal I and $a(x) \neq 0 \forall x \in I$. Note we are not assuming that a, b, and c are constants. We seek y_p , a particular solution. We shall use the method of variation of parameters.

If $y_1(x)$ and $y_2(x)$ are two (known) LI solutions of the homogeneous equation \Rightarrow

$$y_h = c_1 y_1(x) + c_2 y_2(x).$$

To find y_p we shall replace c_1 and c_2 by unknown functions of x and seek to determine these functions. Hence let

$$y_p = v_2(x)y_1(x) + v_2(x)y_2(x)$$

Substitution of the above into the differential equation \Rightarrow only one condition for v_1 and v_2 . We may therefore impose another condition arbitrarily but in such a manner as to simplify things. Now

$$y'_p = v_1 y'_1 + v_2 y'_2 + v'_1 y_1 + v'_2 y_2$$

If we require

$$v_1' y_1 + v_2' y_2 \equiv 0 (*)$$

then no second derivatives of v_1 and v_2 will appear in y_p'' . We therefore make this one condition. The other comes from the differential equation. Now $(*) \Rightarrow$

$$y_p'' = v_1'y_1' + v_1y_1'' + v_2y_2' + v_2y_2''$$

Substituting into the differential equation implies

$$v_1(\underbrace{ay_1'' + by_1' + cy_1}) + v_2(\underbrace{ay_2'' + by_2' + cy_2}) + av_1'y_1' + av_2'y_2' = f(x)$$

Since the "lower bracketed" quantities are zero, this last equation \Rightarrow

$$v_1'y_1' + v_2'y_2' = \frac{f(x)}{a(x)}$$

This is a second condition for v'_1 and v'_2 .

 \Rightarrow we have found two equations to determine v_1, v_2 namely

$$v_1'y_1 + v_2'y_2 \equiv 0$$

and

$$v_1'y_1' + v_2'y_2' \equiv \frac{f(x)}{a(x)}$$

These two equations can be solved for v'_1 , v'_2 provided

$$\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \neq 0$$

However, the above is the Wronskian of y_1 , y_2 and is never zero since y_1 and y_2 are LI. Hence

$$v_{1}' = \frac{\begin{vmatrix} 0 & y_{2} \\ \frac{f}{a} & y_{2}' \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}$$

and

$$v_{2}' = \frac{\begin{vmatrix} y_{1} & 0 \\ y_{1}' & \frac{f}{a} \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}$$

 \Rightarrow

$$v_1 = -\int \frac{y_2 f(x)}{a(x) \ W[y_1, y_2]} dx$$

and

$$v_{2} = \int \frac{y_{1}f(x)}{a(x) \ W[y_{1}, y_{2}]} dx$$

The particular solution to non-homogeneous equation is

$$y_p = v_1(x) y_1(x) + v_2(x) y_2(x)$$

with v_1 and v_2 given by the above expressions.

Example .

$$y'' + y = \sec x$$

 \Rightarrow let $y_1 = \cos x$ and $y_2 = \sin x$, since these are the two LI homogeneous solutions. Then we take

$$y_p = v_1(x)\cos x + v_2(x)\sin x$$

The two conditions given above \Rightarrow

$$v'_1 \cos x + v'_2 \sin x = 0$$
$$-v'_1 \sin x + v'_2 \cos x = \sec x.$$

Since $W[y_1, y_2] = \cos^2 x + \sin^2 x = 1$

$$v_1 = -\int \frac{\sin x \sec x}{1} dx = -\int \frac{\sin x}{\cos x} dx = \ln|\cos x|$$

and

$$v_2 = \int \cos x \sec x dx = \int 1 dx = x$$

There is no need to include constants of integration, since these just lead to homogeneous solutions in y_p .

 \Rightarrow

$$y_p = \ln|\cos x|\cos x + x\sin x.$$

Hence we get finally that

$$y = y_h + y_p = c_1 \cos x + c_2 \sin x + \ln|\cos x| \cos x + x \sin x$$

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.