Ma 530

Linear Differential Equations

We shall now begin a detailed study of the second-order linear differential equation

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)
$$

Fundamental theory of second-order linear equations

The following theorem gives information concerning the existence of solutions of second-order linear differential equations. We shall accept it as valid without proof.

Theorem 1: Consider the Initial Value Problem

$$
\begin{gathered}
\text { D.E. } a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \\
\text { I.C. } y\left(x_{0}\right)=y_{0} \quad y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}
\end{gathered}
$$

If $a(x), b(x), c(x), f(x)$ are all continuous functions in the interval I, where $x_{0} \in I$ and $a(x) \neq 0$ for all x in I, then the IVP possesses a unique solution. This solution has a continuous derivative and is defined throughout I.

Example

$$
\begin{array}{rlrl}
\text { D.E. } a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y & =0 & \text { Homogeneous Equation } \\
\text { I.C. } y\left(x_{0}\right)=0 & y^{\prime}\left(x_{0}\right)=0
\end{array}
$$

One solution is $y(x) \equiv 0$. Theorem $1 \Rightarrow$ only solution is $y \equiv 0$.
We shall assume from now on that a, b, c, and f are continuous in a common interval I and $a(x) \neq 0$ in I so that Theorem 1 holds.

Notation: Let

$$
L[y] \equiv a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y .
$$

Then $L[2]=2 c(x)$

$$
L[3 x]=3 b(x)+3 x c(x) .
$$

With this notation the second order differential equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(y) y=f(x)$ can be written as $L[y]=f(x)$. The homogeneous case is when $f(x)=0 \Rightarrow L[y]=0$. This is called the homogeneous equation. If $f(x) \neq 0 \Rightarrow$ a nonhomogeneous equation. $L[y]$ is called a linear operator because it has the following property.

Theorem 2:

$$
L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]
$$

where y_{1} and y_{2} are any twice differential functions and c_{1} and c_{2} are any constants.
Proof:

$$
\begin{aligned}
L\left[c_{1} y_{1}+c_{2} y_{2}\right] & =a(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+b(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+c(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =a(x)\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+b(x)\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+c(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left[a(x) y_{1}^{\prime \prime}+b(x) y_{1}^{\prime}+c(x) y_{1}\right]+c_{2}\left[a(x) y_{2}^{\prime \prime}+b(x) y_{2}^{\prime}+c(x) y_{2}\right]
\end{aligned}
$$

$\Rightarrow L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]$

Properties of solutions of second order equations.

Theorem 3: If $y_{1}(x)$ and $y_{2}(x)$ are solutions of the homogeneous equation $L[y]=0$, then $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is also a solution.
Proof. $L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]$ from above. Since y_{1} is a solution of $L[y]=0 \Rightarrow L\left[y_{1}\right]=0$. Similarly $L\left[y_{2}\right]=0$.
Hence $L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]=0+0=0 \Rightarrow y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution of $L(y)=0$.

Example $y^{\prime \prime}-9 y=0 \quad e^{3 x}$ and $e^{-3 x}$ are solutions. Theorem $3 \Rightarrow y=c_{1} e^{3 x}+c_{2} e^{-3 x}$ is also a solution.

Remark. We desire to be able to find the general solution of $L[y]=0$. The above theorem tells us that if y_{1} and y_{2} are solutions, then $c_{1} y_{1}+c_{2} y_{2}$ is a solution, but it does not tell us that this is the general solution. In order to know when one has a general solution it is necessary to introduce the concept of the linear independence of two functions.

Definition: Two functions $y_{1}(x)$ and $y_{2}(x)$ are called linearly dependent (LD) in an interval I if it is possible to find two constants c_{1} and c_{2}, not both zero, so that

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0 \quad \forall x \in I .
$$

Two functions are called linearly independent (LI) if they are not linearly dependent, i.e., if

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0 \quad \forall x \in I \Rightarrow c_{1}=c_{2}=0 .
$$

Remark. If two functions are $L D$ in $I \Rightarrow$ one of the functions is equal to a constant times the other in I.
Example (a) $x, 2 x$ are $L D$ in any interval I, since

$$
(-2) x+(1) 2 x=0 \quad \forall x \in I
$$

(b) x^{2}, x are $L I$ in any interval I, since

$$
c_{1} x^{2}+c_{2} x=0 \quad \forall x \in I
$$

is impossible because this equation has at most two real roots in I. Thus, we must have $c_{1}=c_{2}=0$.
(c) Two functions are $L D$ if one of them is the zero function. If $y_{1} \equiv 0$, then

$$
c_{1} y_{1}+0 \cdot y_{2}=c_{1} 0+0 \cdot y \equiv 0 \forall x \in I
$$

and any $c_{1} \neq 0$.
(d) If $\lambda_{1} \neq \lambda_{2}$, then $e^{\lambda_{1} x}$ and $e^{\lambda_{2} x}$ are LI for if

$$
\Rightarrow \quad c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \equiv 0 .
$$

But c_{1} is a constant and therefore the last equation $\Rightarrow \lambda_{1}=\lambda_{2}$, which is a contradiction.

Facts from algebra needed in the proofs of the next theorems.

1. $\left.\begin{array}{l}d_{1} x+d_{2} y=d_{3} \\ e_{1} x+e_{2} y=e_{3}\end{array}\right\}$ has a unique solution $\Leftrightarrow\left|\begin{array}{ll}d_{1} & d_{2} \\ e_{1} & e_{2}\end{array}\right| \neq 0$

If $d_{3}=e_{3}=0$ and $\operatorname{det} \neq 0 \Rightarrow x=y=0$ is the only solution.
2. $\left.\begin{array}{l}d_{1} x+d_{2} y=0 \\ e_{1} x+e_{2} y=0\end{array}\right\}$ has nontrivial solution. $\Leftrightarrow\left|\begin{array}{ll}d_{1} & d_{2} \\ e_{1} & e_{2}\end{array}\right|=0$

Definition: The Wronskian of two differentiable functions y_{1} and y_{2} is defined to be

$$
W\left[y_{1}(x), y_{2}(x)\right] \equiv\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right| \equiv y_{1}(x) y_{2}^{\prime} \quad(x)-y_{1}^{\prime}(x) y_{2}(x) .
$$

Theorem 4. If $W\left[y_{1}(x), y_{2}(x)\right]$ is different from zero for at least one point in an interval I, then $y_{1}(x)$ and $y_{2}(x)$ are $L I$ in I.

Proof. Suppose y_{1}, y_{2} are $L D$. Then \exists constants c_{1}, c_{2}, not both zero, such that

$$
\left.\begin{array}{l}
\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x}) \equiv 0 \\
\mathrm{c}_{1} \mathrm{y}_{1}^{\prime}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}^{\prime}(\mathrm{x}) \equiv 0
\end{array}\right\}
$$

By assumption these two equations have a nontrivial solution c_{1}, c_{2} at each point x in I. Therefore the determinant of the coefficients (by 2) must be zero for each x. But the determinant of coefficients $=W\left[y_{1}(x), y_{2}(x)\right]$ and $W \neq 0$ for at least one point in $\mathrm{I} . \Rightarrow y_{1}$ and y_{2} are not $L D$.

Corollary. If y_{1}, y_{2} are $L D$ in $I \Rightarrow W\left[y_{1}(x), y_{2}(x)\right] \equiv 0$ in I.

Remark. Converse of Theorem 4 is not true in general, i.e., there exist functions which are $L I$ in an interval I and whose Wronskian is $\equiv 0$ in I.
However, if y_{1} and y_{2} are solutions of $L[y]=0$ then the following converse holds.

Theorem 5. If $y_{1}(x), y_{2}(x)$ are $L I$ solutions of $L[y]=0$ in I, then $W\left[y_{1}(x), y_{2}(x)\right]$ is never zero in I.

Proof. If $W\left[y_{1}(x), y_{2}(x)\right]=0$ for some $x_{0} \in I$, then the equations

$$
\begin{aligned}
& c_{1} y_{1}\left(x_{0}\right)+c_{2} y_{2}\left(x_{0}\right)=0 \\
& c_{1} y_{1}^{\prime}\left(x_{0}\right)+c_{2} y_{2}^{\prime}\left(x_{0}\right)=0
\end{aligned}
$$

have a nontrivial solution, i.e. $\exists c_{1}, c_{2}$ not both zero satisfying the system. For these values of c_{1} and c_{2} the function $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is a solution of $L[y]=0$ and satisfies the initial conditions $y\left(x_{0}\right)=0, y^{\prime}\left(x_{0}\right)=0$. However, by Theorem 1 the only solution of this problem is $y(x) \equiv 0 \Rightarrow$ $c_{1} y_{1}(x)+c_{2} y_{2}(x) \equiv 0 \forall x \in I \Rightarrow y_{1}, y_{2}$ are $L D$. Contradiction! $\Rightarrow W[]$ is never zero in I.

Corollary. The Wronskian of 2 solutions of $L[y]=0$ is either identically zero (if solutions are $L D$) or never zero (if solutions are $L I$).

Theorem 6. If $y_{1}(x)$ and $y_{2}(x)$ are $L I$ solutions of $L[y]=0$, then $y=c_{1} y_{1}+c_{2} y_{2}$ is the general solution of $L[y]=0$.

Example $e^{3 x}$ and $e^{-3 x}$ are $L I$ solutions of $y^{\prime \prime}-9 y=0 \Rightarrow$ general solution is $y=c_{1} e^{3 x}+c_{2} e^{-3 x}$.
Theorem 6 tells us that the problem of finding the general solution of $L[y]=0$ is reduced to finding any two linearly independent solutions.

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Question: Do two $L I$ solutions of $L[y]=0$ actually exist? The answer is given in the affirmative by the next theorem.

Theorem 7. \exists two linear independent solutions of $L[y]=0$.
Proof. Let $y_{1}(x)$ be the unique solution of $L[y]=0$ with initial conditions $y_{1}\left(x_{0}\right)=1, y_{1}^{\prime}\left(x_{0}\right)=0$, and $y_{2}(x)$ be the unique solution of $L[y]=0$ with initial conditions $y_{2}\left(x_{0}\right)=0, y_{2}^{\prime}\left(x_{0}\right)=1$. Note that y_{1} and y_{2} exist by Theorem 1. Now y_{1} and y_{2} are $L I$ by Theorem 5 since

$$
W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 .
$$

Theorem 8. If y_{p} is any particular solution of the nonhomogeneous equation $L[y]=f(x)$ and y_{h} is the general solution of the homogeneous equation $L[y]=0$, then the general solution of $L[y]=f(x)$ is $y=y_{p}+y_{h}$.

Example Solve $y^{\prime \prime}-9 y=e^{x}$
We know that $y_{h}=c_{1} e^{3 x}+c_{2} e^{-3 x} . y_{p}=$? Assume $y_{p}=A e^{x}$
$\Rightarrow A e^{x}-9 A e^{x}=e^{x} \Rightarrow-8 A=1 \quad A=-\frac{1}{8} \Rightarrow y_{p}=-\frac{1}{8} e^{x}$
$\Rightarrow y=c_{1} e^{3 x}+c_{2} e^{-3 x}-\frac{1}{8} e^{x}$ is the general solution.
Theorem 9. Principle of superposition. If y_{1} is a solution of $L[y]=f_{1}$ and y_{2} is a solution of $L[y]=f_{2}$, then $y=y_{1}+y_{2}$ is a solution of $L[y]=f_{1}+f_{2}$.

Example Solve $y^{\prime \prime}-9 y=e^{x}+5$. Before we found that $y=-\frac{1}{8} e^{x}$ was a particular solution of $y^{\prime \prime}-9 y=e^{x}$. To find
a particular solution of $y^{\prime \prime}-9 y=5$ assume $y \equiv k \Rightarrow k=-\frac{5}{9}$. The general solution of equation is therefore

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}-\frac{1}{8} e^{x}-\frac{5}{9} .
$$

Extension: If for $i=1,2, \ldots, n, y_{i}$ is a solution of $L[y]=f_{i}$, then $\sum_{i=1}^{n} y_{i}$ is a solution of $L[y]=\sum_{i=1}^{n} f_{i}$.

Complex-valued Solutions

A complex-valued function f of a real variable x is a function of the form

$$
f(x)=u(x)+i v(x)
$$

where $u(x)$ and $v(x)$ are real functions and $i=\sqrt{-1}$.
Definition. If $f=u+i v, u, v$ real functions, then f is continuous if u and v are continuous; f is differential if u and v are differential and

$$
f^{\prime}(x)=u^{\prime}(x)+i v^{\prime}(x) .
$$

Example a) $f(x)=3 x+i x^{2} \Rightarrow f^{\prime}(x)=3+2 i x$
b) $\frac{d}{d x}\left(3 x+i x^{2}\right)^{2}=2\left(3 x+i x^{2}\right)(3+2 i x)=2\left(9 x-2 x^{3}+9 i x^{2}\right)$
c) Let

$$
E(x)=e^{a x}(\cos b x+i \sin b x)
$$

Then

$$
\begin{aligned}
E^{\prime}(x) & =a e^{a x}(\cos b x+i \sin b x)+e^{a x}(-b \sin b x+b i \cos b x) \\
& =e^{a x}[a(\cos b x+i \sin b x)+b i(\cos b x+i \sin b x)] \\
& =e^{a x}[a+b i](\cos b x+i \sin b x) .
\end{aligned}
$$

Hence

$$
E^{\prime}(x)=(a+b i) E(x) .
$$

Based on this we define the complex exponential via

$$
e^{(a+b i) x}=e^{a x} \cos b x+i e^{a x} \sin b x
$$

$a=0 \Rightarrow$

$$
e^{b i x}=\cos b x+i \sin b x
$$

This is called Euler's formula. Hence

$$
e^{(a+b i) x}=e^{a x} \cdot e^{b i x}
$$

Example $y=e^{i x}$ satisfies $y^{\prime \prime}+y=0$ since $y^{\prime}=i e^{i x} y^{\prime \prime}=-e^{i x} \Rightarrow-e^{i x}+e^{i x}=0$.
The theorem below gives the connection between real and complex solutions of a linear differential equation with real coefficients.
Theorem 1. Consider the differential equation

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0
$$

where $a(x), b(x)$, and $c(x)$ are real functions. The complex function $y=u+i v$, where u and v are real, is a solution of this equation $\Leftrightarrow \bar{u}$ and v are solutions.

Proof. As before we denote the equation by $L[y]=0$. It is easily shown that $L[y]=L[u]+i L[v]$ where $L[u]$ and $L[v]$ are real. Therefore y is a solution $\Leftrightarrow L[y]=L[u]+i L[v] \equiv 0$. Since a complex number is zero \Leftrightarrow its real and imaginary parts are zero,
$\Rightarrow L[y]=0 \Leftrightarrow L[u]=0$ and $L[v]=0 \Leftrightarrow u$ and v solutions.
Example $y=e^{i x}$ is a solution of $y^{\prime \prime}+y=0$. Since $e^{i x}=\cos x+i \sin x \Rightarrow \cos x$ and $\sin x$ are solutions. This is easily verified.

Homogeneous Linear Equations with Constant Coefficients

We shall now discuss the problem of solving the homogeneous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0(*)
$$

where a, b and c are real constants and $a \neq 0$.

Possible candidates for a solution are x and powers of x. These are no good. $\ln x$ is also no good. We shall try $e^{\lambda x}$. If $y=e^{\lambda x}$ is a solution of $(*)$
$\Rightarrow a \lambda^{2} e^{\lambda x}+b \lambda e^{\lambda x}+c e^{\lambda x}=e^{\lambda x}\left(a \lambda^{2}+b \lambda+c\right)=0$. This is to be a solution $\forall x . \Rightarrow$

$$
a \lambda^{2}+b \lambda+c=0 .
$$

This equation for λ is called the auxiliary or characteristic equation.

It has the solution $\lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{\Delta}}{2 a} \quad \Delta=b^{2}-4 a c$
There are three possibilities:
(1) $\Delta>0$ two real, distinct roots
(2) $\Delta=0$ one real root, repeated
(3) $\Delta<0$ two imaginary roots which are the complex conjugates of each other, i.e. if $\lambda_{1}=\alpha+i \beta \Rightarrow$ $\lambda_{2}=\alpha-i \beta$
We shall now discuss the three cases in detail.

Case 1. $\Delta>0$. There are two real distinct roots λ_{1}, λ_{2}, where $\lambda_{1} \neq \lambda_{2}$

$$
\lambda_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \lambda_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

$\Rightarrow e^{\lambda_{1} x}$ and $e^{\lambda_{2} x}$ are both solutions of the differential equation. These functions are LI, \Rightarrow general solution is

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} .
$$

where λ_{1} and λ_{2} are both real and $\lambda_{1} \neq \lambda_{2}$.
Example $2 y^{\prime \prime}-y^{\prime}-3 y=0$
$\Rightarrow 2 \lambda^{2}-\lambda-3=0$
or

$$
(2 \lambda-3)(\lambda+1)=0 \Rightarrow \lambda_{1}=-1 \quad \lambda_{2}=\frac{3}{2} \Rightarrow y=c_{1} e^{-x}+c_{2} e^{+\frac{3}{2} x} .
$$

Case 2. $\Delta=0$. There is one real, repeated root $\lambda_{1}=-\frac{b}{2 a} \Rightarrow e^{\lambda_{1} x}$ is a solution. We need a second LI solution. To find it we shall use the method of variation of parameters. We seek a solution of the form

$$
y=v(x) e^{\lambda_{1} x}
$$

where $v(x)$ is a function to be determined. Now

$$
y^{\prime}=v^{\prime} e^{\lambda_{1} x}+v \lambda_{1} e^{\lambda_{1} x}
$$

and

$$
\begin{array}{cc}
y^{\prime \prime}=v^{\prime \prime} e^{\lambda_{1} x}+2 v^{\prime} \lambda_{1} e^{\lambda_{1} x}+v \lambda_{1}^{2} e^{\lambda_{1} x} \\
\Rightarrow & a v^{\prime \prime}(x) e^{\lambda_{1} x}+2 a v^{\prime} \lambda_{1} e^{\lambda_{1} x}+a v \lambda_{1}^{2} e^{\lambda_{1} x}+b v^{\prime} e^{\lambda_{1} x}+b v \lambda_{1} e^{\lambda_{1} x}+c v e^{\lambda_{1} x}=0 \\
\Rightarrow & a v^{\prime \prime}+\underbrace{\left(2 a \lambda_{1}+b\right)} v^{\prime}+\underbrace{\left(a \lambda_{1}^{2}+b \lambda_{1}+c\right)} v=0
\end{array}
$$

$\Rightarrow v^{\prime \prime}=0($ why? $) \Rightarrow$

$$
v=c_{1}+c_{2} x
$$

$$
\begin{aligned}
& \Rightarrow \\
& \quad y=v e^{\lambda_{1} x}=c_{1} e^{\lambda_{1} x}+c_{2} x e^{\lambda_{1} x}
\end{aligned}
$$

is a solution of the differential equation in the case where there exists one repeated root λ_{1}. Since $e^{\lambda_{1} x}$ and $x c^{\lambda_{1} x}$ are $\mathrm{LI} \Rightarrow$ this is the general solution.

```
Example \(y^{\prime \prime}-4 y^{\prime}+4 y=0\)
    \(\lambda^{2}-4 \lambda+4=0 \quad\) or \((\lambda-2)^{2}=0 \Rightarrow\) one real, repeated root \(\lambda=2\). \(\Rightarrow\)
```

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

Case $3 . \Delta<02$ complex roots

$$
\begin{array}{r}
\lambda=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=-\frac{b}{2 a} \pm \frac{i \sqrt{4 a c-b^{2}}}{2 a} \\
\lambda_{1}=\alpha+i \beta=-\frac{b}{2 a}+i \sqrt{\frac{c}{a}-\frac{b^{2}}{4 a^{2}}} \\
\lambda_{2}=\alpha-i \beta=-\frac{b}{2 a}-i \sqrt{\frac{c}{a}-\frac{b^{2}}{4 a^{2}}}
\end{array}
$$

where α and β are real numbers.
\Rightarrow two complex solutions. $e^{(\alpha+i \beta) x}=e^{\alpha x}(\cos \beta x+i \sin \beta x)$ and $e^{(\alpha-i \beta) x}=e^{\alpha x}(\cos \beta x-i \sin \beta x)$

Since the differential equation has real coefficients, \Rightarrow real and imaginary parts of above are solutions, i.e.,
$e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are both solutions in this case. These are LI functions.
\Rightarrow the solution is

$$
y=e^{\alpha x}(A \cos \beta x+B \sin \beta x) \text { where } A, B \text { real constants. }
$$

Example

$$
\begin{gathered}
32 y^{\prime \prime}-40 y^{\prime}+17 y=0 \\
32 \lambda^{2}-40 \lambda+17=0 \\
\lambda=\frac{40 \pm \sqrt{1600-4(32)(17)}}{2(32)}=\frac{40 \pm \sqrt{1600-2176}}{2(32)}=\frac{40 \pm i \sqrt{576}}{2(32)}=\frac{5 \pm \sqrt{9}}{8}=\frac{5}{8} \pm \frac{3}{8} i
\end{gathered}
$$

Thus

$$
\lambda_{1}=\frac{5}{8}+\frac{3}{8} i \text { and } \lambda_{2}=\frac{5}{8}-\frac{3}{8} i
$$

\Rightarrow

$$
y=e^{\frac{5}{8} x}\left(A \cos \frac{3}{8} x+B \sin \frac{3}{8} x\right)
$$

Example Write down a second order homogeneous linear differential equation with real constant coefficients whose solutions are

$$
\frac{1}{2} e^{-2 x} \cos 3 x \text { and } \frac{3 e^{-2 x}}{4} \sin 3 x
$$

$\Rightarrow \alpha=-2 \quad \beta=3$ so that $\lambda_{1}=-2+3 i$ and $\quad \lambda_{2}=-2-3 i$. \Rightarrow

$$
\begin{aligned}
p(\lambda) & =[\lambda-(-2+3 i)][\lambda-(-2-3 i)] \\
& =[\lambda+2-3 i][\lambda+2+3 i] \\
& =\lambda^{2}+(2+3 i) \lambda+(2-3 i) \lambda+4+9 \\
& =\lambda^{2}+4 \lambda+13
\end{aligned}
$$

(Check: $\lambda=\frac{-4 \pm \sqrt{16-4(1)(13)}}{2}=\frac{-4 \pm b i}{2}=-2 \pm 3 i$)
\Rightarrow equation is

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

Example This example is a video slide show. Slide Example
You will need Real Player to view this. To get it click on Real Player.

Undetermined Coefficients

Let us now consider the problem of solving

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(x) \quad a \neq 0 \tag{*}
\end{equation*}
$$

a, b, c real constants. We know that the general solution is $y=y_{h}+y_{p}$, where

$$
y_{h}=\text { the solution of the homogeneous equation }
$$

and

$$
y_{p}=\text { a particular solution of the equation }
$$

We know how to find y_{h}. We shall now discuss ways of finding y_{p} for certain special functions $f(x)$.

1. $\boldsymbol{f}(\boldsymbol{x})=K e^{\alpha x} \quad K$ constant, α constant.

Thus we seek y_{p} for

$$
a y^{\prime \prime}+b y^{\prime}+c y=K e^{\alpha x} .
$$

Due to the exponential form of $f(x)$ we seek y_{p} of the form

$$
y_{p}=A e^{\alpha x}
$$

$A=$? The differential equation $\left({ }^{*}\right) \Rightarrow$

$$
\left(a \alpha^{2}+b \alpha+c\right) A e^{\alpha x}=K e^{\alpha x}
$$

\Rightarrow

$$
A=\frac{K}{a \alpha^{2}+b \alpha+c}
$$

\Rightarrow

$$
y_{p}=\frac{K e^{\alpha x}}{a \alpha^{2}+b \alpha+c}
$$

The above is a particular solution provided the denominator is non-zero. Note that the denominator is $p(\lambda)=a \lambda^{2}+b \lambda+c$ with $\lambda=\alpha$. This is the characteristic polynomial with $\lambda=\alpha$.

If $p(\alpha)=0, \Rightarrow$ we do not have a y_{p}. However, $p(\alpha)=0 \Rightarrow \alpha$ is a root of characteristic equation. $\Rightarrow e^{\alpha x}$ is solution of the homogeneous equation, and therefore $A e^{\alpha x}$ cannot be a solution of the nonhomogeneous equation. If $p(\alpha)=0$, we try

$$
y_{p}=A x e^{\alpha x}
$$

$\Rightarrow y_{p}^{\prime}=A \alpha x e^{\alpha x}+A e^{\alpha x}$ and $y_{p}^{\prime \prime}=A \alpha^{2} x e^{\alpha x}+A \alpha e^{\alpha x}+A \alpha e^{\alpha x}=A \alpha^{2} x e^{\alpha x}+2 A \alpha e^{\alpha x}$
Substitution into the differential equation $(*) \Rightarrow$

$$
A x e^{\alpha x}\left[a \alpha^{2}+b \alpha+c\right]+A e^{\alpha x}[2 a \alpha+b]=K e^{\alpha x}
$$

\Rightarrow

$$
A=\frac{K}{2 a \alpha+b}
$$

\Rightarrow

$$
y_{p}=\frac{K x e^{\alpha x}}{2 a \alpha+b} \quad \text { if } \quad p(\alpha)=0
$$

provided, of course, that $2 a \alpha+b \neq 0$. Note that $p(\lambda)=a \lambda^{2}+b \lambda+c \Rightarrow p^{\prime}(\lambda)=2 a \lambda+b$ \Rightarrow

$$
y_{p}=\frac{K x e^{\alpha x}}{p^{\prime}(\alpha)} \text { when } p(\alpha)=0 \text { and } p^{\prime}(\alpha) \neq 0
$$

If $p(\alpha)=0$ and $p^{\prime}(\alpha)=0 \Rightarrow$ above y_{p} is no good. But $p^{\prime}(\alpha)=0 \Rightarrow 2 a \alpha+b=0 \Rightarrow \alpha=-\frac{b}{2 a} . \quad \Rightarrow \alpha$ is a double (repeated) root of $a \lambda^{2}+b \lambda+c=0$. Hence both $e^{\alpha x}$ and $x e^{\alpha x}$ are solutions of the homogeneous equation if $p(\alpha)=p^{\prime}(\alpha)=0$, and these cannot therefore be solutions of the nonhomogeneous equation. If $p(\alpha)=p^{\prime}(\alpha)=0$ we try

$$
y_{p}=A x^{2} e^{\alpha x} .
$$

Differentiating and substituting into the equation leads to

$$
A=\frac{K}{2 a}=\frac{K}{p^{\prime \prime}(\alpha)}
$$

since $p^{\prime}(\lambda)=2 a \lambda+b \quad \Rightarrow p^{\prime \prime}(\lambda)=2 a$
Thus

$$
y_{p}=\frac{K}{p^{\prime \prime}(\alpha)} x^{2} e^{\alpha x} \text { if } p(\alpha)=p^{\prime}(\alpha)=0
$$

$p^{\prime \prime}(\alpha) \neq 0$ since $a \neq 0$ by assumption.

Summary: A particular solution of $L[y]=k e^{\alpha x}$ is

$$
\begin{aligned}
& y_{p}=\frac{K e^{\alpha x}}{p(\alpha)} \quad \text { if } p(\alpha) \neq 0 \\
& y_{p}=\frac{K x e^{\alpha x}}{p^{\prime}(\alpha)} \text { if } p(\alpha)=0, p^{\prime}(\alpha) \neq 0 \\
& y_{p}=\frac{K}{p^{\prime \prime}(\alpha)} x^{2} e^{\alpha x} \quad \text { if } p(\alpha)=p^{\prime}(\alpha)=0
\end{aligned}
$$

Example (a) $y^{\prime \prime}-5 y^{\prime}+4 y=2 e^{x}$
Homogeneous solution: $p(\lambda)=\lambda^{2}-5 \lambda+4=(\lambda-4)(\lambda-1) \quad \Rightarrow \lambda=4,1 \Rightarrow y_{h}=c_{1} e^{x}+c_{2} e^{4 x}$
Now to find a particular solution for $2 e^{x} . \Rightarrow \alpha=1 \quad p(1)=0 \quad$ Since $p^{\prime}(\lambda)=2 \lambda-5$ $p^{\prime}(1)=2-5=-3 \neq 0$

$$
y_{p}=\frac{k x e^{\alpha x}}{p^{\prime}(\alpha)}=\frac{2 x e^{x}}{-3}
$$

\Rightarrow

$$
y=y_{h}+y_{p}=c_{1} e^{x}+c_{2} e^{4 x}-\frac{2}{3} x e^{x}
$$

(b) $y^{\prime \prime}-5 y^{\prime}+4 y=3+2 e^{x}$
$y_{h}=c_{1} e^{x}+c_{2} e^{4 x} \quad p(\lambda)=\lambda^{2}-5 \lambda+4$
Consider $y^{\prime \prime}-5 y^{\prime}+4 y=3$
$3=k e^{\alpha x}$ with $k=3 \alpha=0 p(0)=4 \neq 0 \quad \Rightarrow y_{p}^{\prime}=\frac{3}{4}$
\Rightarrow

$$
y=c_{1} e^{x}+c_{2} e^{4 x}+\frac{3}{4}-\frac{2}{3} x e^{x}
$$

2. $f(x)=k \cos \beta x$ or $f(x)=k \sin \beta x$

For example, we seek a particular solution of

$$
L[y]=a y^{\prime \prime}+b y^{\prime}+c y=k \cos \beta x
$$

We shall use the complex exponential to solve for y_{p}. Recall

$$
k e^{i \beta x}=k \cos \beta x+i k \sin \beta x .
$$

Hence we consider also the equation

$$
L[v]=a v^{\prime \prime}+b v^{\prime}+c v=k \sin \beta x
$$

By multiplying this last equation by i and adding the result to $L[y] \Rightarrow$

$$
L[y]+i L[v]=k \cos \beta x+i k \sin \beta x=k e^{i \beta x} .
$$

But $i L[v]=L[i v]$, since L is linear. Hence if we let $w=y+i v \Rightarrow$ the equation

$$
a w^{\prime \prime}+b w^{\prime}+c w=k e^{i \beta x}
$$

or

$$
L[y]+i L[v]=L[y]+L[i v]=L[y+i v]=L[w]=k e^{i \beta x}
$$

and therefore we have the complex equation $L[w]=k e^{i \beta x}$ for w. To find w_{p} for this we use the formulas derived above. Then we find y_{p} from $y_{p}=\operatorname{Re} w_{p}=$ real part of w_{p}. For $f(x)=k \sin \beta x$ we have $y_{p}=\operatorname{Im} w_{p}=$ imaginary part of w_{p}.

Example Find a particular solution of

$$
y^{\prime \prime}+7 y^{\prime}+12 y=3 \cos 2 x
$$

Let $w=y+i v \Rightarrow$ find w_{p} for $w^{\prime \prime}+7 w^{\prime}+12 w=3 e^{2 i x}$. Now $p(\lambda)=\lambda^{2}+7 \lambda+12 \Rightarrow$ $p(\alpha)=p(2 i)=(2 i)^{2}+7(2 i)+12=-4+14 i+12 \neq 0$ \Rightarrow

$$
w_{p}=\frac{3 e^{2 i x}}{p(2 i)}=\frac{3 e^{2 i x}}{8+14 i} .
$$

$y_{p}=\operatorname{Re} w_{p}=$?
To find y_{p} we shall rationalize the denominator.

$$
\begin{aligned}
w_{p} & =\frac{3 e^{2 i x}}{8+14 i} \times \frac{8-14 i}{8-14 i} \\
& =\frac{3(8-14 i) e^{2 i x}}{64+196} \\
& =\frac{3(8-14 i) e^{2 i x}}{260} \\
& =\frac{3}{260}(8-14 i)[\cos 2 x+i \sin 2 x] \\
& =\frac{3}{260}[8 \cos 2 x+14 \sin 2 x]+\frac{3}{260} i[8 \sin 2 x-14 \cos 2 x]
\end{aligned}
$$

Thus

$$
y_{p}=\operatorname{Re} w_{p}=\frac{3}{260}[8 \cos 2 x+14 \sin 2 x]
$$

Example

$$
\begin{gathered}
y^{\prime \prime}+4 y=3 \sin 2 x \\
\Rightarrow \\
w^{\prime \prime}+4 w=3 e^{2 i x} \\
\Rightarrow \quad p(\lambda)=\lambda^{2}+4 \Rightarrow p(2 i)=0 \text { and } p^{\prime}(\lambda)=2 \lambda . \text { Now } p^{\prime}(2 i) \neq 0 \\
w_{p}=\frac{3 x e^{2 i x}}{p^{\prime}(2 i)}=\frac{3 x e^{2 i x}}{4 i} \times \frac{i}{i}=-\frac{3}{4} i x e^{2 i x}=-\frac{3}{4} i x[\cos 2 x+i \sin 2 x] \\
=-\frac{3}{4} x i \cos 2 x+\frac{3}{4} x \sin 2 x
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \qquad y_{p}=\operatorname{Im} w_{p}=-\frac{3}{4} x \cos 2 x
\end{aligned}
$$

Example $y^{\prime \prime}+7 y^{\prime}+12 y=3 \cos 2 x$ again.
Let $y_{p}=A \cos 2 x+B \sin 2 x$
$y_{p}^{\prime}=-2 A \sin 2 x+2 B \cos 2 x \quad y_{p}^{\prime \prime}=4 A \cos 2 x-4 B \sin 2 x$
\Rightarrow

$$
-4 A \cos 2 x-4 B \sin 2 x-14 A \sin 2 x+14 B \cos 2 x+12 A \cos 2 x+12 B \sin 2 x=3 \cos 2 x
$$

\Rightarrow

$$
\cos 2 x[8 A+14 B]+\sin 2 x[8 B-14 A]=3 \cos 2 x
$$

\Rightarrow

$$
8 A+14 B=38 B-14 A=0 \Rightarrow B=\frac{7}{4} A
$$

$$
8 A+\frac{7}{2}(7) A=3 \quad 8 A+\frac{49}{2} A=3 \Rightarrow \frac{16+49}{2} A=3 \quad A=\frac{6}{65} \Rightarrow B=\frac{21}{130}
$$

$$
\Rightarrow y_{p}=\frac{6}{65} \cos 2 x+\frac{21}{130} \sin 2 x \text { as before. }
$$

III. $f(x)=B_{0}+B_{1} x+\cdots+B_{n} x^{n} \quad$ polynomial.

We want y_{p} for

$$
a y^{\prime \prime}+b y^{\prime}+c y=B_{0}+B_{1} x+\cdots+B_{n} x^{n}
$$

We try a solution of the form

$$
y_{p}=Q_{n}(x)=A_{0}+A_{1} x+\cdots+A_{n} x^{n}
$$

If $p(0) \neq 0$, then when we substitute Q_{n} into the equation we will get a polynomial of degree n and we can determine $A_{k}^{\prime} s$ by equating coefficients of like powers of x. If $p(0)=0$, but $p^{\prime}(0) \neq 0$ use $y_{p}=x Q_{n}(x)$. Similarly if $p(0)=p^{\prime}(0)=0$ take $y_{p}=x^{2} Q_{n}(x)$.

Example

$$
y^{\prime \prime}+3 y^{\prime}=2 x^{2}+3 x
$$

In this example the right hand side is a polynomial of degree 2 .

$$
p(\lambda)=\lambda^{2}+3 \lambda \text { so } p(0)=0 . \quad p^{\prime}(\lambda)=2 \lambda+3 \text { and } p^{\prime}(0) \neq 0
$$

$$
y_{p}=x Q_{2}(x)=x\left(A_{0}+A_{1} x+A_{2} x^{2}\right)=A_{0} x+A_{1} x^{2}+A_{2} x^{3}
$$

\Rightarrow

$$
y_{p}^{\prime}=A_{0}+2 A_{1} x+3 A_{2} x^{3} \Rightarrow y_{p}^{\prime \prime}=2 A_{1}+6 A_{2} x
$$

The differential equation \Rightarrow

$$
2 A_{1}+6_{2} x+3 A_{0}+6 A_{1} x+9 A_{2} x^{2}=2 x^{2}+3 x
$$

\Rightarrow

$$
\begin{gathered}
2 A_{1}+3 A_{0}=0 \text { and } 6 A_{2}+6 A_{1}=3 \text { and } 9 A_{2}=2 . \\
\Rightarrow A_{2}=\frac{2}{9} \quad A_{2}+A_{1}=\frac{1}{2} \quad \frac{2}{9}+A_{1}=\frac{1}{2} \Rightarrow A_{1}=\frac{1}{2}-\frac{2}{9}=\frac{9-4}{18}=\frac{5}{18} \\
2\left(\frac{5}{18}\right)+3 A_{0}=0 \quad A_{0}=-\frac{10}{18(3)}=-\frac{5}{27} \Rightarrow \\
y_{p}=-\frac{5}{27} x+\frac{5}{18} x^{2}+\frac{2}{9} x^{3}
\end{gathered}
$$

IV. $f(x)=\left(B_{0}+B_{1} x+\cdots+B_{n} x^{n}\right) e^{\alpha x}$

We want a particular solution for the DE

$$
a y^{\prime \prime}+b y^{\prime}+c y=\left(B_{0}+B_{1} x+\cdots+B_{n} x^{n}\right) e^{\alpha x}
$$

We seek a solution of the form

$$
\begin{aligned}
& y_{p}=Q_{n}(x) e^{\alpha x} \text { if } p(\alpha) \neq 0 \\
& y_{p}=x Q_{n}(x)^{\alpha x} \text { if } p(\alpha)=0, \text { and } p^{\prime}(\alpha) \neq 0 \\
& y_{p}=x^{2} Q_{n}(x) e^{\alpha x} \text { if } p(\alpha)=p^{\prime}(\alpha)=0
\end{aligned}
$$

Example These examples are video slide shows. Slide Example 1 Slide Example 2
You will need Real Player to view this. To get it click on Real Player.

Variation of Parameters

Let us now consider the non-homogeneous equation

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)
$$

where a, b, c, f are continuous functions in some internal I and $a(x) \neq 0 \forall x \in I$. Note we are not assuming that a, b, and c are constants. We seek y_{p}, a particular solution. We shall use the method of variation of parameters.
If $y_{1}(x)$ and $y_{2}(x)$ are two (known) LI solutions of the homogeneous equation \Rightarrow

$$
y_{h}=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

To find y_{p} we shall replace c_{1} and c_{2} by unknown functions of x and seek to determine these functions. Hence let

$$
y_{p}=v_{2}(x) y_{1}(x)+v_{2}(x) y_{2}(x)
$$

Substitution of the above into the differential equation \Rightarrow only one condition for v_{1} and v_{2}. We may therefore impose another condition arbitrarily but in such a manner as to simplify things. Now

$$
y_{p}^{\prime}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}+v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}
$$

If we require

$$
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2} \equiv 0 \quad(*)
$$

then no second derivatives of v_{1} and v_{2} will appear in $y_{p}^{\prime \prime}$. We therefore make this one condition. The other comes from the differential equation. Now $(*) \Rightarrow$

$$
y_{p}^{\prime \prime}=v_{1}^{\prime} y_{1}^{\prime}+v_{1} y_{1}^{\prime \prime}+v_{2} y_{2}^{\prime}+v_{2} y_{2}^{\prime \prime}
$$

Substituting into the differential equation implies

$$
v_{1}(\underbrace{a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}})+v_{2}(\underbrace{a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}})+a v_{1}^{\prime} y_{1}^{\prime}+a v_{2}^{\prime} y_{2}^{\prime}=f(x)
$$

Since the "lower bracketed" quantities are zero, this last equation \Rightarrow

$$
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=\frac{f(x)}{a(x)}
$$

This is a second condition for v_{1}^{\prime} and v_{2}^{\prime}.
\Rightarrow we have found two equations to determine v_{1}, v_{2} namely

$$
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2} \equiv 0
$$

and

$$
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime} \equiv \frac{f(x)}{a(x)}
$$

These two equations can be solved for $v_{1}^{\prime}, v_{2}^{\prime}$ provided

$$
\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \neq 0
$$

However, the above is the Wronskian of y_{1}, y_{2} and is never zero since y_{1} and y_{2} are LI. Hence

$$
v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & y_{2} \\
\frac{f}{a} & y_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}
$$

and

$$
v_{2}^{\prime}=\frac{\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & \frac{f}{a}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}
$$

\Rightarrow

$$
v_{1}=-\int \frac{y_{2} f(x)}{a(x) W\left[y_{1}, y_{2}\right]} d x
$$

and

$$
v_{2}=\int \frac{y_{1} f(x)}{a(x) W\left[y_{1}, y_{2}\right]} d x
$$

The particular solution to non-homogeneous equation is

$$
y_{p}=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)
$$

with v_{1} and ν_{2} given by the above expressions.

Example

$$
y^{\prime \prime}+y=\sec x
$$

\Rightarrow let $y_{1}=\cos x$ and $y_{2}=\sin x$, since these are the two LI homogeneous solutions. Then we take

$$
y_{p}=v_{1}(x) \cos x+v_{2}(x) \sin x
$$

The two conditions given above \Rightarrow

$$
\begin{aligned}
v_{1}^{\prime} \cos x+v_{2}^{\prime} \sin x & =0 \\
-v_{1}^{\prime} \sin x+v_{2}^{\prime} \cos x & =\sec x .
\end{aligned}
$$

Since $W\left[y_{1}, y_{2}\right]=\cos ^{2} x+\sin ^{2} x=1$

$$
v_{1}=-\int \frac{\sin x \sec x}{1} d x=-\int \frac{\sin x}{\cos x} d x=\ln |\cos x|
$$

and

$$
v_{2}=\int \cos x \sec x d x=\int 1 d x=x
$$

There is no need to include constants of integration, since these just lead to homogeneous solutions in y_{p}.

$$
y_{p}=\ln |\cos x| \cos x+x \sin x .
$$

Hence we get finally that

$$
y=y_{h}+y_{p}=c_{1} \cos x+c_{2} \sin x+\ln |\cos x| \cos x+x \sin x
$$

Example This example is a video slide show. Slide Example
You will need Real Player to view this. To get it click on Real Player.

