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Series Solution Near a Singular Point

Finding a Second Linearly Independent Solution

Recall: Near a regular singular point we have
Theorem. If the DE differential equation

y   Pxy   Qxy  0     1

has a regular singular point at x  0, then there is at least one solution which possesses an expansion of
the form

y  xm
n0



anxn.

where m satisfies the indicial equation

m2  p0  1m  q0  0     2
and

p0  lim
x0
xPx

q0  lim
x0
x2Qx

Remark: The motivation for seeking a solution of the form

y  xm
n0



anxn

of
y   Pxy   qxy  0

when x  0 is a regular singular point comes from Euler’s equation. Recall the solutions of

y   px y
  q

x2 y  0

where p and q are constants were
xm1 and xm2

if m1  m2 where real roots and
xm1 and xm1 lnx

for a real, repeated root. The most general equation with a regular singular point at x  0 is obtained
from Euler’s equation by replacing p and q in Euler’s equation by power series. Thus we have

1



y  
n0

 pnxn
x y  

n0
 qnxn

x2 y  0     

Since the transition from Euler’s equation to this last equation is accomplished by replacing constants
by power series, it is natural to expect or guess solutions of  of the form

y  xm
n0



anxn

or perhaps

y  xm
n0



anxn lnx

We will now investigate the nature of the solutions of 1 in more detail than we did before with the
idea of gaining insight into how one finds two linearly independent solutions of 1. Again

y  xm
n0



anxm 
n0



anxmn

y  
n0



anm  nanxmn1

y  
n0



anm  nm  n  1xmn2

The fact that xPx and x2Qx are analytic at x  0 implies that

xPx 
n0



pnxn

x2Qx 
n0



qnxn

Therefore

Py   1
x 

n0



pnxn 
n0



anm  nanxmn1

 xm2 
n0



pnxn 
n0



anm  nanxn

 xm2
n0




k0

n

pnkakm  k xn

 xm2
n0




ko

n1

pnkakm  k  p0anm  n xn

Also
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Qxy  1
x2 

n0



qnxn 
n0



anxmn

 xm2 
n0



qnxn 
n0



anxn

 xm2
n0




k0

n

qnkak xn

 xm2
n0




k0

n1

qnkak  q0an xn

Substituting these expressions for y ,Py , and Qy into 1 and cancelling the factor xm2 yields


n0



anm  nm  n  1  m  np0  q0  
k0

n1

akm  kpnk  qnk  xn  0

Equating the coefficient of xn to zero yields

anm  nm  n  1  m  np0  q0  
k0

n1

akm  kpnk  qnk   0, n  0,1,2,     3

Equation 3 is called the recursion formula. Now n  0 

a0mm  1  mp0  q0   0
which is equation 2 as expected.

Setting n  1 yields
a1m  1m  m  1p0  q0   a0mp1  q1  0

Setting n  2 yields
a2m  2m  1  m  2p0   a0mp2  q2  a1m  1p1  q1   0

In general we have
anm  nm  n  1  m  np0  q0   a0mpn  qn   an1m  n  1p1  q1   0

Let
fm  mm  1  mp0  q0

Then the above equations may be rewritten as
a0fm  0

a1fm  1  a0mp1  q1  0

a2fm  2  a0mp2  q2  a1m  1p1  q1   0

amfm  n  a0mpn  qn   an1m  n  1p1  q1   0     
Once m has been determined, then the following equations give a1 in terms of a0, a2 in terms of a1 and
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a2, etc. The an s are therefore determined in terms of a0 for each choice of m unless
fm  n  0

for some positive integer n, in which case the process breaks off. Thus if m1  m2  n for n  1, the
choice m  m1 will give a solution, but in general the choice m  m2 does not since
fm2  n  fm1  0. Note also that if m1  m2, we have only one solution.

In all other cases where m1 and m2 are real numbers the procedure yields two independent formal
solutions. (We shall not treat the case when m is complex.) The above may be summarized as:
Theorem A. Assume x  0 is a regular singular point of the differential equation

y   Pxy   Qxy  0     1

and that the power series expansions of xPx and x2Qx are valid on an interval |x|  R R  0. Let
the indicial equation

m2  p0  1m  q0  0     2
have real roots m1 and m2 with m1  m2 . Then equation 1 has at least one solution

y1  xm1
n0



anxn a0  0

on the interval 0  x  R where the an’s are determined in terms of a0 by the recursion formula 
above with m replaced by m1, and the seriesanxn converges for |x|  R. Furthermore, if m1  m2 is
not zero or a positive integer, then equation 1 has a second independent solution

y2  xm2
n0



bnxn b0  0

on the same interval, where in this case the bn’s are determined in terms of b0 by  with m replaced
by m2 and again y2 converges for |x|  R.

Theorem A fails to answer the question of what happens when m1  m2 is zero or a positive integer. In
order to convey an idea of the possibilities, we distinguish 3 cases.
Case A. If m1  m2, there cannot exist a second Frobenius solution.

The other two cases case, in which m1  m2 is a positive integer, will be easier to grasp if we insert
m  m2 into the recursion formula  and write it as

amfm2  n  a0m2pn  qn   an1m2  n  1p1  q1      4
The difficulty arises when fm2  n  0 for some integer n.

Case B. If the right hand side of 4 is not zero when fm2  n  0, then there is no possible way of
continuing the calculation. There cannot exist a second Frobenius solution.
Case C. If the right hand side of 4 happens to be zero when fm2  n  0, then an is unrestricted and
can be assigned any value whatever. In particular, we can put an  0 and continue to compute the
coefficients without any further difficulties. Hence, in this case there does exist a second Frobenius
series solution.
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The following will enable us to discover what form the second solution takes when is zero or a positive
integer. We begin by defining a positive integer k by

k  m1  m2  1
The indicial equation

m2  p0  1m  q0  0     2
may be written as

m  m1m  m2  m2  m1  m2m  m1m2  0
Thus

p0  1  m1  m2

or
m2  1  p0  m1

and therefore k  2m1  p0. Since

y  xm1
n0



anxn

is one solution, we seek a second solution by letting
y2  vxy1

Differentiating and substituting into the D.E. 1 

vy1
  Pxy1

  Qxy1  v y1  v 2y1
  Py1  0

or
v 
v 

 2 y1


y1
 P

Hence

lnv   2 lny1  Pdx



v   1
y1

2 e
 Pdx

so

v   1
y1

2 e
 Pdxdx

Therefore

v   1
x2m1anxn 2 e

 p0
x p1 dx

since xPx  pnxn. Therefore
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v   1
x2m1anxn 2 e

p0 lnxp1x  1
xkanxn 2 e

p1x  1
xk
gx

where gx is a function that is analytic near x  0 and
g0  1

a0
2

so

gx 
n0



bnxn

Therefore
v   b0xk  b1xk1   bk1x1  bk  bk1x 

and finally

v  b0
xk1

k  1  b1
xk2

k  2   bk1 lnx  bkx 

Thus

y  vy1  y1 b0
xk1

k  1  b1
xk2

k  2   bk1 lnx  bkx 

 y1bk1 lnx 
n0



akxnm1 b0
xk1

k  1  b1
xk2

k  2   bkx 

 bk1y1 lnx  xm1k1
n0



cnxn

 bk1y1 lnx  xm2
n0



cnxn

since k  m1  m2  1  m2  m1  k  1.
This last expression is then the form of our second solution. It yields some information. First, if m1 and
m2 are equal, then k  1 and bk1  b0  0 . In this case–Case A–the term containing lnx is definitely
part of the second solution. However, if m1  m2  k  1 is a positive integer, then sometimes bk1  0
and the log term is present (Case B) and sometimes bk1  0 and there is no log term (Case C). [Note
that we have no real way of knowing this, since the coefficients of are not readily determined.] In any
case when the method of Frobenius fails we know the second solution is of the form

y2  y1 lnx  xm2
n0



cnxn
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