Ma 530 Series Solution of DEs

Solution by Power Series

We shall now study ways of solving the second order differential equation

2
@205 + a1 () + apy = S0

This equation has variable coefficients. In any interval where a,(x) # 0, we can divide the equation by
as(x) to obtain y"' + P(x)y’ + O(x)y = R(x). We shall consider only the homogeneous case

'+ Py + 0@y =0. (1)

This equation will be solved by power series. It will turn out that near a pointx = a

y=ag+aj(x—a)+ay(x—a)®+ - +an(x—a)" + -

= Zan(x —a)"
n=0

where ag,ay,..., an,... are constants to be determined. This series is the Taylor series expansion of the
solution y.

Let us first begin with two definitions.

Definition 1. A function f{x) is said to be analytic at x = « if it can be expanded in a power series, in

powers of x — a, which converges to f{x) in an open interval containing x = a. This series is the Taylor
series for f{x).

Note: A necessary condition for f{x) to be analytic is that f{x) and its derivatives of all orders exist at
X =a.
f(x) analytic =

00 n)
1 = 3 LD (¢ gy
n=0

This series is called the Taylor series of f{x) near x = a.
When the pointx = a = 0, the series is called MacLaurin series. If f{(x) is not analytic at x = a, itis
said to be singular or to have a singularity at x = a.

Examples:

1. flx) = l—lx = (1 —x)~! is analytic atx = 0
f@)=-(1-072(-1) = (1-x)?
o) =20 +x)73  fx)=3.20-x)*
j(”)(x) =n!(1-x)"""1 sothatatx = 0 f(”)(O) =n!



1

= Taylor expansion for nearx = 0 is

1—x
S0 = X0 = 0) =X x = L xda e
However, _llx is not analytic at x = 1, since it approaches o as x - 1. = no power series in powers of
(x-1).

2.flx) = XT o= 2,... s not analytic at x = 0
f(x) = %x%_l n>2> % —1 < 0=f(x)atx = 0 does not exist.

3. flx) = 21+1 analytic for all real x. However, for x complex, x = i is a singularity.
. redl
4. What are the singularities of f{x) = %?
x> —=2x“+x
f(x) — x—1 — x—1 — 1

x(x2 = 2x+1) - x(x—1)2 x(x—1)
= x = 0 and x = 1 are singularities.

Definition 2. The point x = a is called an ordinary point of the differential equation

'+ PE)Y + 0@y =0 (1)

if both P(x) and Q(x) are analytic at x = a. If either P(x) or O(x) is not analytic at x = a, then this
point is called a singular point or singularity of the differential equation (1).

Example
2 =3x+20" + Sxy +x2y =0
y y Y
We rewrite the equation as

1" ﬁy/ 2
L ) WAl e oy

y =0

Thus P(x) = (x_z‘/)_ﬁ and Q) = u_igﬁ Thus the equation has singularities at

x =2, 1, and 0. x = 0 is a singular point because the derivative of P(x) at 0 is not defined. All other
points are ordinary points.

The theorem below gives conditions which insure the existence of a power series solution.

Theorem. If x = a is an ordinary point of the differential equation (1), then 3 two linearly independent
power-series solutions of the form

o0
y = Zan(x —a)?
n=0



These solutions will be valid in some interval containing x = a.

Method of Solution Near an Ordinary Point.

Example Consider the differential equation
Y +xy +2y = 0.

Here P(x) = x and Q(x) = 2. They are both analytic V x, and in particular at x = 0. Hence by the
above theorem 3 two solutions of form

o0
y = Zanx”.
n=0

(Here a = 0) The coefficients a, are determined from the differential equation as follows.
Now

o0
y' = Z anpnx™1
n=1

and

y” = Zan(n)(n - l)xn_2

n=2

The differential equation =

o0 o0 o0
Zan(n)(n —Dx" 2 4+ x. Zannx”_l +2. Zanx” =0.
n=2 n=0

= n:l —

or

2a¢ + Zan(n)(n —1)x"2 +Zan(n +2) x" =0. (%)

n=2 n=1

We shall combine the coefficients of like powers of x in (x) to get one power series. To do this we must
put each term in the equation in the same form. This is accomplished by “shifting” the second series in

().
If we let n = k — 2 in the second series, (x) becomes

o0 [e 0]
2ag + Zan(n)(n —1x"2 + z:ak_z(k)xk_2 = 0.
n=2 k=3

Since n and k are “dummy” place keepers, we may replace them by m. Doing this yields

2ag+2+1-az+ Y [am(m)(m — 1) + @y (m)x"2 = 0.

m=3
Remark. Ifzgoan(x—a)” =0 Vx insome interval > a, = 0 forn =0,1,2,...

Thus we have from the above equation



1.2(ay +ag) = 0 or ar = —ay

2.m=3=@3-2a3+3a;) =0 or 2a3 = -a; > a3 = —+a;
3m=4 =>4 -+3a4+4a3) =0 or a4 = —%az = +%a0
4. = [m(m - am + ma,,—2] =0 or ay = —ﬁam_z form > 3.
The expression in 4 is called the recurrence relation. Continuing we have form = Sandm = 6
as = —ja3 = -4 (—5a1) = 7za; and ag = —+ay = —+(3a0) = —5590
Hence the solution is
y=ag+aj+ax®+- =ag[l —x%+ %x‘l - ﬁ)ﬁ + -] +apx - %x3 + ﬁxs -]

It can be shown that in general

0

® _1\n—1,2n-1
yzao[z%(—l)”?).5“}(2n_1)x2” ] +al[§’T 2f41.)“(’26n_2) ]

The above is the general solution of differential equation with two arbitrary constants a¢ and a.
Question: Where is the series solution valid? We shall use the ratio test to determine where the series
converges. Recall that if lim-e |%| =L and L < 1= )by, converges.

n

Recall that we have a;, = __ml—l Apm—2 .
1 2
2 ———amX
. A X" . il 4m . 1 .2
= lim - | =1im -t 1 =]im |— |=
m—o0 X m—c0 am m—c0 il X 0

= the series converges V x.
In general we have the following result about the convergence of a series solution.

Theorem. If x = a is an ordinary point for the differential equation
y'+ Py + 0(x)y =0,

then 3 2 L.I. series solutions of the form
e8]
)’(x) = Zan(x —a)".
0

These series converge at least V values of x such that | x —a |< R, where R is the distance from the
point x = a to the nearest singular point of the D.E. in the complex plane.

Remark. The distance betweenz; = aj + bjiand zo = ap + bpi is
1
| z1 —z2 |= [(a1 —a2)? + (b) —bp)?] 2.

Example (x2-3x+2)y" + /xy +xZy =0
=

1 ﬁ ! x2
R I T L PR Y

x = 2, 1 are singular points. Also x = 0 is a singular point due to the ,/x . 3 a solution of form

y=20



y = Zan(x— 10)"
about 10. By the theorem this converges Vx such that | x — 10 |< R. Since x = 2 is the nearest
singularity tox = 10, R =| 10-2 |= 8.

Example Find the general solution near x = 0 of

Y +xy=0.

=20 anx" y' =20 napx" 1 =3 napx"and " =37
n(n —1)apx"2 = >, nn- Danx"2.

The differential equation =
e} o0
Zan(n)(n —x"2 + Z anx"™! = 0.
2 0

We must line up like powers of x. To do this both series must be of the same form. Consider

D an(m)(n—1)x"2 = 3 (k+3)(k +2)apsxk!
2 k=—1

where we haveletn —2 =k+1=>n=k+30ork=n—-3. Whenn = 2 = k = —1. The D.E. may now
be written as

o0 o0
Z (k + 3)(k + 2)agax*+1 + Z a1l =0
k=—1 0

2(Daz + Y Ak +3)(k+2)ajs + a1 =0

0
=>ay =0 and
—ay
=——2X  k=0,12,...
3 = i3kt 2) e

- — ~4 _ —4o
k=0 =a3= 32 = D )
k=1 =ay= 4.31 = 121 k=2 =as= S-j =0

_ - 43 _ _4 _ _4o_
k=3 =a¢ 65 ~ 306 180

_ _ —a4 _ 1
k=4 =a7=5¢=560
k=5 =ag=0

_ _ —ag _ __—ag
k=6 =ag= 58~ 98(180) etc.
Hence

o0
- k — _1.3 1 .6_ 1 9, ... N I S Y
y kz_(;;akx apll 6x + 560x 72.180)6 + -] +aqlx 5% + 7.6.12x + -],

Example This example is a video slide show. Slide Example



You will need Real Player to view this. To get it click on Real Player.

Solution Near a Singular Point
Consider now the case where we seek the solution of
Y+ Py + 0@y =0 (1)

near a singular point of either P or 0, i.e. a point where either P or Q are not analytic. We shall use the
Method of Frobenius. We cannot treat all singularities. We begin with a definition.

Definition. A pointx = a is said to be a regular singular point or a regular singularity of the D.E. (1) if

1. x = a is a singular point of (1); and

2. (x—a)P(x) and (x — a)2Q(x) are analytic atx = a .
Remark:

If f{x) analytic atx = a =

Six) = Zan(x —a)"
0

If f{x) is not analytic atx = a =

Sfx) = gan(x—a)” =t (xci_z)S + (xa_‘fl)z + (xa:la) +ag+aj(x—a)+ -

Thus the conditions (x — a)P(x) and (x — a)2Q(x) are analytic at x = a restrict the amount of singularity
that P(x) and Q(x) can have.

Remark. Condition 2 = (x — a)P(x) and (x — a)2Q(x) have Taylor seriesatx = a . Ifx = aisa
singular point which is not regular, it is called an irregular singular point.

Ex. (1) x2y" + pxy' + gy = 0 Euler’s equation. This may be rewritten as

y”+§y’+x%y=0

x = 0 is a regular singular point since xP(x) = x% = pand x20(x) = xzxi2 =q

2)

2

y// n YJ’/ n 3

> -0
x(x—1)3 4

It is clear that x = 0 and x = 1 are singular points. We must examine each singularity separately to see
if it is regular or irregular. Consider x = 0 first. Now xP(x) = 2 which is analytic near x = 0. also

x20(x) = ( 3)1‘) - which is also analytic near x = 0. Therefore x = 0 is a regular singular point.
—

Now considerx = 1. Thena = 1 and

(- Py = 22D

which is analytic at x = 1.



-1 = 25

which is not analytic at x = 1.= x = 1 is an irregular singular point.
Note that we must treat each singular point individually.

Near a regular singular point we have

Theorem. At a regular singular point x = a of the differential equation

V' + Py + 0(x)y = 0
there is at least one solution which possesses an expansion of the form

o0
y=x-a) Zan(x —a)”.
n=0
In order to see how one solves equation (1) near a regular singular point x = a in the easiest manner we
shall assume a = 0. If a # 0, then let t = x — a in the D.E. and solve in terms of ¢. ¢ = 0 is then a
regular singular point.

Now
[0} o0
y= x“Zanx" = Za x'te
0 0
=
0
y = Z(n + a)apxte-]
0
and
o0
Yy = Z(n +a)(n+a— Dayxte2
0

Now xP(x) and x2Q(x) are analytic at x = 0 = that
o0
xP(x) = Z pnx"
0
and
o0
X20(x) = D gnx"
0

The D.E. " + P(x)y’ + O(x)y = 0 may be multiplied by x2 to get

xzy” +x2P(x)y' +x2Q(x)y =0

= x2[a(a — Dagx?? +(a + 1)(@)a;x? 1 + .+
+x[po +p1x + - Jlaagx® ! + (a + Dajx® +« « ]
+go + g1x + - N[agx® + a1x®* +...]1=0
= [a(a — Dagx® + (a + Daajx?! + ..
+apoagx® +ap1x®ag + pola + Dax® + .+
+goaox® + qoax®! + gragx® +++] =0
Setting the coefficients of x* equal to 0 = a(a — 1)ag + apoag + goag = 0



= ale—1)+apg+qgo =0 or

a>+@o-Da+qo=0  (2)
Equation (2) is called the indicial equation. This result is not surprising in light of the results we got for
Euler’s equation. Therefore if @ is a root of (2) = y = D a»x®*™ is a solution of (1) for this a. The ans
are determined from the D.E.
Remarks: Since xP(x) = Y pux" and x20(x) = Y qnx", poand g, are the first terms in the Taylor
expansions of xP(x) and x2Q(x). Thus

po = limxP(x) and g¢ = limx2P(x)
x-0 x-0

Ex. Find a series solution of the D.E.

9x2y” +(x+2)y=0

nearx = 0
We rewrite the equation as
. (x+2) ~-0
9x2
Px)=0 Ok) = ():f) so x = 0 is regular singular point.
X

xP(x) =0 =Y pux" s0 pp=0 =pg=0
WO = =F 45 =Yg =q0 = limeo(F+5) = 5

Therefore equation (2) for a becomes

or

and therefore a = % ora = %

1 2
= solutions of the form y = x3 Y " anpx™ andy = x3 Y5 bpx".

Consider the case a = % Since
* 1
y = Zanxn-i-?
n=0
ot D™ and = S+ - 2yan
y —n:On 3 anX y —nzol’l 3 n 3 anX

DE. 92y + (x+2)y =0 =

92(11 + %)(n - %)anx%? +x2anx"+? +2Zanxn+% =0
n=0 0

or



0 o0
1 1
S HIGn+ DGn-2) + 2an)x™ T + 3 apx = 0
0 k=1
Leth+d =n+d ok=nsio
0 1 © 1
S9n2 =30 -2+ 2aga™T + P a2 <o,
0 k=1
Or
00 1
S B3mGm = Dam + a6 = 0
1
=
—Am-1
A =
" 3mBm - 1)
_ T R .
m=1=a =55 m=2=a 65~ 6532 2356
_ —___ 9
m=3 =43 = -335.,50
L 2 3
. . _ X X _ X e
Therefore one solution is y| = agx 3 (1 32 T 3356 2356890 )
For o = % one gets
— box (1- 5 4 -2 o
Y2 = DoX ( =32 T 3u67 ~ 3467900 T )

For the method of Frobenius we have
Theorem. If the differential equation

Y+ POy + 00y = 0
has a regular singularity at x = 0 and if the roots a; and a; of the indicial equation are distinct and do
not differ by an integer, then there are two linearly independent solutions of the form

o0 0
yilx) = x% Zanx” and y)(x) = x%2 anx”
0 0

Bessel’s Equation

The equation

22y '+ (2 = pTy =0 (1)
is known as Bessel’s equation. Here p is constant. We shall assume p > 0. The solutions are called

Bessel functions. Now (1) =
2

= we have a regular singular point at x = 0.
Therefore we assume y = > anx™*®

2
Now xP(x) = x(%) =1 = po=1landx2Q(x) = x% (1 - p—z) =x2-p? =gy = —p2
X

Therefore, the indicial equation, a? + (pg — 1)a + g¢ = 0, in this case is



= q?2-p2=0 ora=1p

Considera =p > 0>
y =20 anx™P y' =30+ panx™ Pty =300+ p)(n+ p - Dapx™P2
DE.(1)=

o0 e8] o0 o0
Z(n +p)(n+p - Dapx™P + Z(n +p)anx™P + Z anpx"P+2 — p? Z anx"P =0
0 0 0 0
=
o0 o0
Z{(n +p)n+p—1)+ (n+p) - p*ranx™P + Z anx™P+2 =
0 0
=
o0 o0
Z{(n +p)2 —(n+p) + (n+p)—p*rapx™P + Zanx”+p+2 =0
0 0
or
o0 o0
n)(n+2p)anx™P + ) ap_x"P =
2 (1 +2p)anx™? + 3 a2 = 0
1 k=2

In the last series we have made the substitution £ + p = n + p + 2 which implies n = k — 2. Replacing
the “dummy” variables » and k by m leads to

=
(1 +2p)arx!? + D " {m(m + 2p)am + a2 }x"™P = 0
2
= +2p)a; =0 an= ,ZEST'E;) n=23,..
_ . —ag ___—Qo
=a; =0 andap = 20+2p) - A(p2)
_ -1 o _ . 4
a3 =0 anday = 770 a TR0
a5 =0 andag = — —2_ = — o
5 6(6+2p) 42.62(p+3)2(p+1) (p+2)
4331 ) (p2) (p+3)
In general
az = (-D 1 0

a
Kakp+ k) (p+k—-1). ..p+2)@+1)
Therefore one solution is
d 2k
=a —1k xP*
y oA kz(:)( R G D k-1 D D)

By a proper choice of a( we can write y as the conventional Bessel function. Let

1
2°T(p + 1)

apg =

where I is the gamma function defined by

10



I'(s) = J-:)O xS le™dx

For s = n an integer we may show that '(n) = (n —1)!
Also T(s)=(G-DI'(s—1) s>1

© (_l)kxp+2k
J =
() kE% KPPy (D + D + ... (o + 1}

— +2k
Z k'l“((jv+1k)+1) ( )P

This is called a Bessel Function of the first kind of order p.

It may be shown J, converges Vx > 0ifp > 0. Forthe casep = nanintegerI'(p +k+1) = (n+k)! .
=

(1)K n+2k
Inx) = Z K (n+ k) <)2C>

Remark. There are many relations between Bessel functions. For example,

Jo) = ((kvl))z ( >2k

S ad (~D)k 2k-1 L) = N EL 2k-1
Jo(x)‘Z(Zk) k-)2< ) ()= zllk!(k—n! (%)

ad 1n+l 4l
20: n+1)'n'( ) —J1(x)

The graph of Jo(x) and J; (x) are given below.

1v 20 25 30
X

Jo(x)
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