Ma 530 Series Solution of DEs

Solution by Power Series

We shall now study ways of solving the second order differential equation

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x)
$$

This equation has variable coefficients. In any interval where $a_{2}(x) \neq 0$, we can divide the equation by $a_{2}(x)$ to obtain $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$. We shall consider only the homogeneous case

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 . \tag{1}
\end{equation*}
$$

This equation will be solved by power series. It will turn out that near a point $x=a$

$$
\begin{aligned}
y & =a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots+a_{n}(x-a)^{n}+\cdots \\
& =\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
\end{aligned}
$$

where $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ are constants to be determined. This series is the Taylor series expansion of the solution y.
Let us first begin with two definitions.
Definition 1. A function $f(x)$ is said to be analytic at $x=a$ if it can be expanded in a power series, in powers of $x-a$, which converges to $f(x)$ in an open interval containing $x=a$. This series is the Taylor series for $f(x)$.

Note: A necessary condition for $f(x)$ to be analytic is that $f(x)$ and its derivatives of all orders exist at $x=a$.
$f(x)$ analytic \Rightarrow

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

This series is called the Taylor series of $f(x)$ near $x=a$.
When the point $x=a=0$, the series is called MacLaurin series. If $f(x)$ is not analytic at $x=a$, it is said to be singular or to have a singularity at $x=a$.

Examples:

1. $f(x)=\frac{1}{1-x}=(1-x)^{-1}$ is analytic at $x=0$

$$
f^{\prime}(x)=-(1-x)^{-2}(-1)=(1-x)^{2}
$$

$f^{\prime \prime}(x)=+2(1+x)^{-3} \quad f^{\prime \prime \prime}(x)=3.2(1-x)^{-4}$
$f^{(n)}(x)=n!(1-x)^{-n-1}$ so that at $x=0 f^{(n)}(0)=n!$
\Rightarrow Taylor expansion for $\frac{1}{1-x}$ near $x=0$ is
$f(x)=\sum_{n=0}^{\infty} \frac{n!}{n!}(x-0)^{n}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots$.
However, $\frac{1}{1-x}$ is not analytic at $x=1$, since it approaches ∞ as $x \rightarrow 1 . \Rightarrow$ no power series in powers of $(x-1)$.
2. $f(x)=x^{\frac{1}{n}} \quad n=2, \ldots$ is not analytic at $x=0$
$f^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1} \quad n \geq 2 \Rightarrow \frac{1}{n}-1<0 \Rightarrow f^{\prime}(x)$ at $x=0$ does not exist.
3. $f(x)=\frac{1}{x^{2}+1}$ analytic for all real x. However, for x complex, $x= \pm i$ is a singularity.
4. What are the singularities of $f(x)=\frac{x-1}{x^{3}-2 x^{2}+x}$?

$$
f(x)=\frac{x-1}{x\left(x^{2}-2 x+1\right)}=\frac{x-1}{x(x-1)^{2}}=\frac{1}{x(x-1)}
$$

$\Rightarrow x=0$ and $x=1$ are singularities.

Definition 2. The point $x=a$ is called an ordinary point of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{1}
\end{equation*}
$$

if both $P(x)$ and $Q(x)$ are analytic at $x=a$. If either $P(x)$ or $Q(x)$ is not analytic at $x=a$, then this point is called a singular point or singularity of the differential equation (1).

Example

$$
\left(x^{2}-3 x+2\right) y^{\prime \prime}+\sqrt{x} y^{\prime}+x^{2} y=0
$$

We rewrite the equation as

$$
y^{\prime \prime}+\frac{\sqrt{x} y^{\prime}}{(x-2)(x-1)}+\frac{x^{2}}{(x-2)(x-1)} y=0
$$

Thus $P(x)=\frac{\sqrt{x}}{(x-2)(x-1)}$ and $Q(x)=\frac{x^{2}}{(x-2)(x-1)}$. Thus the equation has singularities at $x=2,1$, and $0 . x=0$ is a singular point because the derivative of $P(x)$ at 0 is not defined. All other points are ordinary points.

The theorem below gives conditions which insure the existence of a power series solution.

Theorem. If $x=a$ is an ordinary point of the differential equation (1), then \exists two linearly independent power-series solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

These solutions will be valid in some interval containing $x=a$.

Method of Solution Near an Ordinary Point.

Example Consider the differential equation

$$
y^{\prime \prime}+x y^{\prime}+2 y=0
$$

Here $P(x)=x$ and $Q(x)=2$. They are both analytic $\forall x$, and in particular at $x=0$. Hence by the above theorem \exists two solutions of form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

(Here $a=0$) The coefficients a_{n} are determined from the differential equation as follows. Now

$$
y^{\prime}=\sum_{n=1}^{\infty} a_{n} n x^{n-1}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}
$$

The differential equation \Rightarrow

$$
\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}+x \cdot \sum_{n=1}^{\infty} a_{n} n x^{n-1}+2 \cdot \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

or

$$
\begin{equation*}
2 a_{0}+\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}+\sum_{n=1}^{\infty} a_{n}(n+2) x^{n}=0 . \tag{*}
\end{equation*}
$$

We shall combine the coefficients of like powers of x in $(*)$ to get one power series. To do this we must put each term in the equation in the same form. This is accomplished by "shifting" the second series in (*).

If we let $n=k-2$ in the second series, (*) becomes

$$
2 a_{0}+\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}+\sum_{k=3}^{\infty} a_{k-2}(k) x^{k-2}=0 .
$$

Since n and k are "dummy" place keepers, we may replace them by m. Doing this yields

$$
2 a_{0}+2 \cdot 1 \cdot a_{2}+\sum_{m=3}^{\infty}\left[a_{m}(m)(m-1)+a_{m-2}(m)\right] x^{m-2}=0 .
$$

Remark. If $\sum_{0}^{\infty} a_{n}(x-a)^{n}=0 \quad \forall x$ in some interval $\Rightarrow a_{n}=0$ for $n=0,1,2, \ldots$
Thus we have from the above equation

1. $2\left(a_{2}+a_{0}\right)=0$ or $a_{2}=-a_{0}$
2. $m=3 \Rightarrow\left(3 \cdot 2 a_{3}+3 a_{1}\right)=0$ or $2 a_{3}=-a_{1} \Rightarrow a_{3}=-\frac{1}{2} a_{1}$
3. $m=4 \Rightarrow\left(4 \cdot 3 a_{4}+4 a_{2}\right)=0$ or $a_{4}=-\frac{1}{3} a_{2}=+\frac{1}{3} a_{0}$
4. $\Rightarrow\left[m(m-1) a_{m}+m a_{m-2}\right]=0$ or $a_{m}=-\frac{1}{m-1} a_{m-2}$ for $m \geq 3$.

The expression in 4 is called the recurrence relation. Continuing we have for $m=5$ and $m=6$ $a_{5}=-\frac{1}{4} a_{3}=-\frac{1}{4}\left(-\frac{1}{2} a_{1}\right)=\frac{1}{4 \cdot 2} a_{1} \quad$ and $a_{6}=-\frac{1}{5} a_{4}=-\frac{1}{5}\left(\frac{1}{3} a_{0}\right)=-\frac{1}{5 \cdot 3} a_{0}$
Hence the solution is

$$
y=a_{0}+a_{1}+a_{2} x^{2}+\cdots=a_{0}\left[1-x^{2}+\frac{1}{3} x^{4}-\frac{1}{5 \cdot 3} x^{6}+\cdots\right]+a_{1}\left[x-\frac{1}{2} x^{3}+\frac{1}{4 \cdot 2} x^{5}-\cdots\right] .
$$

It can be shown that in general

$$
y=a_{0}\left[\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{3 \cdot 5 \cdots(2 n-1)} x^{2 n}+\ldots\right]+a_{1}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2 n-1}}{2 \cdot 4 \cdot \cdot(2 n-2)}+\ldots\right] .
$$

The above is the general solution of differential equation with two arbitrary constants a_{0} and a_{1}.
Question: Where is the series solution valid? We shall use the ratio test to determine where the series converges. Recall that if $\lim _{n \rightarrow \infty}\left|\frac{b_{n+k}}{b_{n}}\right|=L$ and $L<1 \Rightarrow \sum b_{n}$ converges.
Recall that we have $a_{m}=-\frac{1}{m-1} a_{m-2}$.
$\Rightarrow \lim _{m \rightarrow \infty}\left|\frac{a_{m+2} x^{m+2}}{a_{m} x^{m}}\right|=\lim _{m \rightarrow \infty}\left|\frac{-\frac{1}{m+1} a_{m} x^{2}}{a_{m}}\right|=\lim _{m \rightarrow \infty}\left|\frac{1}{m+1} x^{2}\right|=0$
\Rightarrow the series converges $\forall x$.

In general we have the following result about the convergence of a series solution.

Theorem. If $x=a$ is an ordinary point for the differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

then $\exists 2$ L.I. series solutions of the form

$$
y(x)=\sum_{0}^{\infty} a_{n}(x-a)^{n}
$$

These series converge at least \forall values of x such that $|x-a|<R$, where R is the distance from the point $x=a$ to the nearest singular point of the D.E. in the complex plane.

Remark. The distance between $z_{1}=a_{1}+b_{1} i$ and $z_{2}=a_{2}+b_{2} i$ is
$\left|z_{1}-z_{2}\right|=\left[\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}\right]^{\frac{1}{2}}$.
Example $\left(x^{2}-3 x+2\right) y^{\prime \prime}+\sqrt{x} y^{\prime}+x^{2} y=0$
\Rightarrow

$$
y^{\prime \prime}+\frac{\sqrt{x}}{(x-2)(x-1)} y^{\prime}+\frac{x^{2}}{(x-2)(x-1)} y=0
$$

$x=2,1$ are singular points. Also $x=0$ is a singular point due to the $\sqrt{x} . \exists$ a solution of form

$$
y=\sum a_{n}(x-10)^{n}
$$

about 10 . By the theorem this converges $\forall x$ such that $|x-10|<R$. Since $x=2$ is the nearest singularity to $x=10, R=|10-2|=8$.

Example Find the general solution near $x=0$ of

$$
y^{\prime \prime}+x y=0
$$

$y=\sum_{0}^{\infty} a_{n} x^{n} y^{\prime}=\sum_{0}^{\infty} n a_{n} x^{n-1}=\sum_{1}^{\infty} n a_{n} x^{n-1}$ and $y^{\prime \prime}=\sum_{1}^{\infty}$
$n(n-1) a_{n} x^{n-2}=\sum_{2}^{\infty} n(n-1) a_{n} x^{n-2}$.
The differential equation \Rightarrow

$$
\sum_{2}^{\infty} a_{n}(n)(n-1) x^{n-2}+\sum_{0}^{\infty} a_{n} x^{n+1}=0 .
$$

We must line up like powers of x. To do this both series must be of the same form. Consider

$$
\sum_{2}^{\infty} a_{n}(n)(n-1) x^{n-2}=\sum_{k=-1}^{\infty}(k+3)(k+2) a_{k+3} x^{k+1}
$$

where we have let $n-2=k+1 \Rightarrow n=k+3$ or $k=n-3$. When $n=2 \Rightarrow k=-1$. The D.E. may now be written as

$$
\sum_{k=-1}^{\infty}(k+3)(k+2) a_{k+3} x^{k+1}+\sum_{0}^{\infty} a_{k} x^{k+1}=0
$$

\Rightarrow

$$
2(1) a_{2}+\sum_{0}^{\infty}\left\{(k+3)(k+2) a_{k+3}+a_{k}\right\} x^{k+1}=0
$$

$\Rightarrow a_{2}=0$ and

$$
a_{k+3}=\frac{-a_{k}}{(k+3)(k+2)} \quad k=0,1,2, \ldots
$$

$k=0 \quad \Rightarrow a_{3}=\frac{-a_{0}}{3 \cdot 2}=\frac{-a_{0}}{6}$
$k=1 \quad \Rightarrow a_{4}=\frac{-a_{1}}{4 \cdot 3}=\frac{-a_{1}}{12} \quad k=2 \quad \Rightarrow a_{5}=\frac{-a_{2}}{5 \cdot 4}=0$
$k=3 \Rightarrow a_{6}=\frac{-a_{3}}{6 \cdot 5}=\frac{a_{0}}{30 \cdot 6}=\frac{a_{0}}{180}$
$k=4 \quad \Rightarrow a_{7}=\frac{-a_{4}}{7 \cdot 6}=\frac{a_{1}}{7 \cdot 6 \cdot 12}$
$k=5 \quad \Rightarrow a_{8}=0$
$k=6 \Rightarrow a_{9}=\frac{-a_{6}}{9 \cdot 8}=\frac{-a_{0}}{9 \cdot 8(180)}$ etc.
Hence

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}\left[1-\frac{1}{6} x^{3}+\frac{1}{560} x^{6}-\frac{1}{72 \cdot 180} x^{9}+\cdots\right]+a_{1}\left[x-\frac{1}{12} x^{4}+\frac{1}{7 \cdot 6 \cdot 12} x^{7}+\cdots\right] .
$$

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Solution Near a Singular Point

Consider now the case where we seek the solution of

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{1}
\end{equation*}
$$

near a singular point of either P or Q, i.e. a point where either P or Q are not analytic. We shall use the Method of Frobenius. We cannot treat all singularities. We begin with a definition.
Definition. A point $x=a$ is said to be a regular singular point or a regular singularity of the D.E. (1) if

1. $x=a$ is a singular point of (1); and
2. $(x-a) P(x)$ and $(x-a)^{2} Q(x)$ are analytic at $x=a$.

Remark:
If $f(x)$ analytic at $x=a \Rightarrow$

$$
f(x)=\sum_{0}^{\infty} a_{n}(x-a)^{n}
$$

If $f(x)$ is not analytic at $x=a \Rightarrow$

$$
f(x)=\sum_{-\infty}^{\infty} a_{n}(x-a)^{n}=\cdots+\frac{a_{-3}}{(x-a)^{3}}+\frac{a_{-2}}{(x-a)^{2}}+\frac{a_{-1}}{(x-a)}+a_{0}+a_{1}(x-a)+\cdots
$$

Thus the conditions $(x-a) P(x)$ and $(x-a)^{2} Q(x)$ are analytic at $x=a$ restrict the amount of singularity that $P(x)$ and $Q(x)$ can have.
Remark. Condition $2 \Rightarrow(x-a) P(x)$ and $(x-a)^{2} Q(x)$ have Taylor series at $x=a$. If $x=a$ is a singular point which is not regular, it is called an irregular singular point.
Ex. (1) $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0 \quad$ Euler's equation. This may be rewritten as

$$
y^{\prime \prime}+\frac{p}{x} y^{\prime}+\frac{q}{x^{2}} y=0
$$

$x=0$ is a regular singular point since $x P(x)=x \frac{p}{x}=p$ and $x^{2} Q(x)=x^{2} \frac{q}{x^{2}}=q$

$$
\begin{equation*}
y^{\prime \prime}+\frac{2}{x} y^{\prime}+\frac{3}{x(x-1)^{3}} y=0 \tag{2}
\end{equation*}
$$

It is clear that $x=0$ and $x=1$ are singular points. We must examine each singularity separately to see if it is regular or irregular. Consider $x=0$ first. Now $x P(x)=2$ which is analytic near $x=0$. also $x^{2} Q(x)=\frac{3 x}{(x-1)^{3}}$ which is also analytic near $x=0$. Therefore $x=0$ is a regular singular point. Now consider $x=1$. Then $a=1$ and

$$
(x-1) P(x)=\frac{2(x-1)}{x}
$$

which is analytic at $x=1$.

$$
(x-1)^{2} Q(x)=\frac{3}{x(x-1)}
$$

which is not analytic at $x=1 . \Rightarrow x=1$ is an irregular singular point.
Note that we must treat each singular point individually.
Near a regular singular point we have
Theorem. At a regular singular point $x=a$ of the differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

there is at least one solution which possesses an expansion of the form

$$
y=(x-a)^{\alpha} \sum_{n=0}^{\infty} a_{n}(x-a)^{n} .
$$

In order to see how one solves equation (1) near a regular singular point $x=a$ in the easiest manner we shall assume $a=0$. If $a \neq 0$, then let $t=x-a$ in the D.E. and solve in terms of $t . t=0$ is then a regular singular point.
Now

$$
\begin{array}{r}
y=x^{\alpha} \sum_{0}^{\infty} a_{n} x^{n}=\sum_{0}^{\infty} a_{n} x^{n+\alpha} \\
y^{\prime}=\sum_{0}^{\infty}(n+\alpha) a_{n} x^{n+\alpha-1}
\end{array}
$$

and

$$
y^{\prime \prime}=\sum_{0}^{\infty}(n+\alpha)(n+\alpha-1) a_{n} x^{n+\alpha-2}
$$

Now $x P(x)$ and $x^{2} Q(x)$ are analytic at $x=0 \Rightarrow$ that

$$
x P(x)=\sum_{0}^{\infty} p_{n} x^{n}
$$

and

$$
x^{2} Q(x)=\sum_{0}^{\infty} q_{n} x^{n}
$$

The D.E. $\quad y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ may be multiplied by x^{2} to get

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x^{2} P(x) y^{\prime}+x^{2} Q(x) y=0 \\
& \Rightarrow x^{2}\left[\alpha(\alpha-1) a_{0} x^{\alpha-2}+(\alpha+1)(\alpha) a_{1} x^{\alpha-1}+\cdots\right] \\
& \quad+x\left[p_{0}+p_{1} x+\cdots\right]\left[\alpha a_{0} x^{\alpha-1}+(\alpha+1) a_{1} x^{\alpha}+\cdots\right] \\
& \quad+\left[q_{0}+q_{1} x+\cdots\right]\left[a_{0} x^{\alpha}+a_{1} x^{\alpha+1}+\cdots\right]=0 \\
& \Rightarrow\left[\alpha(\alpha-1) a_{0} x^{\alpha}+(\alpha+1) \alpha a_{1} x^{\alpha+1}+\cdots\right] \\
& \quad+\left[\alpha p_{0} a_{0} x^{\alpha}+\alpha p_{1} x^{\alpha+1} a_{0}+p_{0}(\alpha+1) a_{1} x^{\alpha+1}+\cdots\right]
\end{aligned}
$$

$$
+\left[q_{0} a_{0} x^{\alpha}+q_{0} a_{1} x^{\alpha+1}+q_{1} a_{0} x^{\alpha+1}+\cdots\right]=0
$$

Setting the coefficients of x^{α} equal to $0 \Rightarrow \alpha(\alpha-1) a_{0}+\alpha p_{0} a_{0}+q_{0} a_{0}=0$
$\Rightarrow \alpha(\alpha-1)+\alpha p_{0}+q_{0}=0$ or

$$
\begin{equation*}
\alpha^{2}+\left(p_{0}-1\right) \alpha+q_{0}=0 \tag{2}
\end{equation*}
$$

Equation (2) is called the indicial equation. This result is not surprising in light of the results we got for Euler's equation. Therefore if α is a root of (2) $\Rightarrow y=\sum a_{n} x^{\alpha+n}$ is a solution of (1) for this α. The $a_{n}^{\prime} s$ are determined from the D.E.
Remarks: Since $x P(x)=\sum p_{n} x^{n}$ and $x^{2} Q(x)=\sum q_{n} x^{n}, p_{0}$ and q_{o} are the first terms in the Taylor expansions of $x P(x)$ and $x^{2} Q(x)$. Thus

$$
p_{0}=\lim _{x \rightarrow 0} x P(x) \text { and } q_{0}=\lim _{x \rightarrow 0} x^{2} P(x)
$$

Ex. Find a series solution of the D.E.

$$
9 x^{2} y^{\prime \prime}+(x+2) y=0
$$

near $x=0$
We rewrite the equation as

$$
y^{\prime \prime}+\frac{(x+2)}{9 x^{2}} y=0
$$

$P(x)=0 \quad Q(x)=\frac{(x+2)}{9 x^{2}} \quad$ so $x=0$ is regular singular point.
$x P(x)=0=\sum p_{n} x^{n} \quad$ so $p_{n}=0 \Rightarrow p_{0}=0$
$x^{2} Q(x)=\frac{x+2}{9}=\frac{2}{9}+\frac{x}{9}=\sum q_{n} x^{n} \Rightarrow q_{0}=\lim _{x \rightarrow 0}\left(\frac{2}{9}+\frac{x}{9}\right)=\frac{2}{9}$
Therefore equation (2) for α becomes

$$
\alpha^{2}-\alpha+\frac{2}{9}=0
$$

or

$$
\left(\alpha-\frac{2}{3}\right)\left(\alpha-\frac{1}{3}\right)=0
$$

and therefore $\alpha=\frac{2}{3}$ or $\alpha=\frac{1}{3}$.
\Rightarrow solutions of the form $y=x^{\frac{1}{3}} \sum_{0}^{\infty} a_{n} x^{n}$ and $y=x^{\frac{2}{3}} \sum_{0}^{\infty} b_{n} x^{n}$.
Consider the case $\alpha=\frac{1}{3}$ Since

$$
\begin{gathered}
y=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{3}} \\
y^{\prime}=\sum_{n=0}^{\infty}\left(n+\frac{1}{3}\right) a_{n} x^{n-\frac{2}{3}} \text { and } y^{\prime \prime}=\sum_{n=0}^{\infty}\left(n+\frac{1}{3}\right)\left(n-\frac{2}{3}\right) a_{n} x^{n-\frac{5}{3}}
\end{gathered}
$$

D.E. $9 x^{2} y^{\prime \prime}+(x+2) y=0 \Rightarrow$

$$
9 \sum_{n=0}^{\infty}\left(n+\frac{1}{3}\right)\left(n-\frac{2}{3}\right) a_{n} x^{n+\frac{1}{3}}+x \sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{3}}+2 \sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{3}}=0
$$

or

$$
\sum_{n=0}^{\infty}\left\{9\left(n+\frac{1}{3}\right)\left(n-\frac{2}{3}\right) a_{n}+2 a_{n}\right\} x^{n+\frac{1}{3}}+\sum_{n=0}^{\infty} a_{n} x^{n+\frac{4}{3}}=0
$$

\Rightarrow

$$
\sum_{0}^{\infty}\left\{[(3 n+1)(3 n-2)+2] a_{n}\right\} x^{n+\frac{1}{3}}+\sum_{k=1}^{\infty} a_{k-1} x^{k+\frac{1}{3}}=0
$$

Let $k+\frac{1}{3}=n+\frac{4}{3} \Rightarrow k=n+1 \Rightarrow$

$$
\sum_{0}^{\infty}\left\{\left[9 n^{2}-3 n-2+2\right] a_{n}\right\} x^{n+\frac{1}{3}}+\sum_{k=1}^{\infty} a_{k-1} x^{k+\frac{1}{3}}=0 .
$$

Or

$$
\sum_{1}^{\infty}\left\{3 m(3 m-1) a_{m}+a_{m-1}\right\} x^{m+\frac{1}{3}}=0
$$

\Rightarrow

$$
a_{m}=\frac{-a_{m-1}}{3 m(3 m-1)}
$$

$m=1 \Rightarrow a_{1}=\frac{a_{0}}{3 \cdot 2} \quad m=2 \Rightarrow a_{2}=-\frac{a_{1}}{6 \cdot 5}=+\frac{a_{0}}{6 \cdot 5 \cdot 3 \cdot 2}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6}$
$m=3 \Rightarrow a_{3}=-\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}$
Therefore one solution is $y_{1}=a_{0} x^{\frac{1}{3}}\left(1-\frac{x}{3 \cdot 2}+\frac{x^{2}}{2 \cdot 3 \cdot 5 \cdot 6}-\frac{x^{3}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}+\cdots\right)$
For $\alpha=\frac{2}{3}$ one gets
$y_{2}=b_{0} x^{\frac{2}{3}}\left(1-\frac{x}{3 \cdot 4}+\frac{x^{2}}{3 \cdot 4 \cdot 6 \cdot 7}-\frac{x^{3}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}+\cdots\right)$
For the method of Frobenius we have
Theorem. If the differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

has a regular singularity at $x=0$ and if the roots α_{1} and α_{2} of the indicial equation are distinct and do not differ by an integer, then there are two linearly independent solutions of the form

$$
y_{1}(x)=x^{\alpha_{1}} \sum_{0}^{\infty} a_{n} x^{n} \text { and } y_{2}(x)=x^{\alpha_{2}} \sum_{0}^{\infty} b_{n} x^{n}
$$

Bessel's Equation

The equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0
$$

is known as Bessel's equation. Here p is constant. We shall assume $p \geq 0$. The solutions are called Bessel functions. Now (1) \Rightarrow

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{p^{2}}{x^{2}} y\right)=0
$$

\Rightarrow we have a regular singular point at $x=0$.
Therefore we assume $y=\sum_{0}^{\infty} a_{n} x^{n+\alpha}$
Now $x P(x)=x\left(\frac{1}{x}\right)=1 \Rightarrow p_{0}=1$ and $x^{2} Q(x)=x^{2}\left(1-\frac{p^{2}}{x^{2}}\right)=x^{2}-p^{2} \Rightarrow q_{0}=-p^{2}$.
Therefore, the indicial equation, $\alpha^{2}+\left(p_{0}-1\right) \alpha+q_{0}=0$, in this case is

$$
\Rightarrow \quad \alpha^{2}-p^{2}=0 \quad \text { or } \alpha= \pm p
$$

Consider $\alpha=p \geq 0 \Rightarrow$

$$
y=\sum_{0}^{\infty} a_{n} x^{R+p} \quad y^{\prime}=\sum_{0}^{\infty}(n+p) a_{n} x^{n+p-1} \quad y^{\prime \prime}=\sum_{0}^{\infty}(n+p)(n+p-1) a_{n} x^{n+p-2}
$$

D.E. (1) \Rightarrow

$$
\begin{array}{cc}
& \sum_{0}^{\infty}(n+p)(n+p-1) a_{n} x^{n+p} \quad+\sum_{0}^{\infty}(n+p) a_{n} x^{n+p}+\sum_{0}^{\infty} a_{n} x^{n+p+2}-p^{2} \sum_{0}^{\infty} a_{n} x^{n+p}=0 \\
\Rightarrow & \quad \sum_{0}^{\infty}\left\{(n+p)(n+p-1)+(n+p)-p^{2}\right\} a_{n} x^{n+p}+\sum_{0}^{\infty} a_{n} x^{n+p+2}=0 \\
\Rightarrow & \sum_{0}^{\infty}\left\{(n+p)^{2}-(n+p)+(n+p)-p^{2}\right\} a_{n} x^{n+p}+\sum_{0}^{\infty} a_{n} x^{n+p+2}=0
\end{array}
$$

or

$$
\sum_{1}^{\infty}(n)(n+2 p) a_{n} x^{n+p}+\sum_{k=2}^{\infty} a_{k-2} x^{k+p}=0
$$

In the last series we have made the substitution $k+p=n+p+2$ which implies $n=k-2$. Replacing the "dummy" variables n and k by m leads to

$$
\begin{aligned}
& \Rightarrow \\
& \qquad \begin{array}{l}
1(1+2 p) a_{1} x^{1+p}+\sum_{2}^{\infty}\left\{m(m+2 p) a_{m}+a_{m-2}\right\} x^{m+p}=0 \\
\Rightarrow(1+2 p) a_{1}=0 \quad a_{n}=\frac{-a_{n-2}}{n(n+2 p)} n=2,3, \ldots \\
a_{1}=0 \text { and } a_{2}=\frac{-a_{0}}{2(2+2 p)}=\frac{-a_{0}}{4(p+2)} \\
a_{3}=0 \text { and } a_{4}=-\frac{1}{4(4+2 p)} a_{2}=+\frac{a_{0}}{a^{2}(p+1) 2(p+2)} \\
=
\end{array} \begin{array}{l}
=\frac{a_{4}}{6(6+2 p)}=-\frac{-a_{0}}{4^{3} \cdot 3!(p+1)(p+2)(p+3)}
\end{array}
\end{aligned}
$$

In general

$$
a_{2 k}=(-1)^{k} \frac{1}{k!4^{k}(p+k)(p+k-1) \ldots(p+2)(p+1)} a_{0}
$$

Therefore one solution is

$$
y=a_{0} \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{p+2 k}}{k!4^{k}(p+k)(p+k-1) \cdots \cdot(p+2)(p+1)}
$$

By a proper choice of a_{0} we can write y as the conventional Bessel function. Let

$$
a_{0}=\frac{1}{2^{p} \Gamma(p+1)}
$$

where Γ is the gamma function defined by

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

For $s=n$ an integer we may show that $\Gamma(n)=(n-1)$!
Also $\Gamma(s)=(s-1) \Gamma(s-1) s>1$

$$
\begin{aligned}
J_{p}(x) & =\sum_{k=0}^{\infty} \frac{\Rightarrow}{k!\left\{2^{2 k} 2^{p}\right\}\{\Gamma(p+1)(p+k) \ldots(p+1)\}} \\
& =\sum_{0}^{\infty} \frac{(1-1)^{k}}{k!\Gamma(p+k+1)}\left(\frac{x}{2}\right)^{p+2 k}
\end{aligned}
$$

This is called a Bessel Function of the first kind of order p.

It may be shown J_{p} converges $\forall x \geq 0$ if $p \geq 0$. For the case $p=n$ an integer $\Gamma(p+k+1)=(n+k)$!.

$$
J_{n}(x)=\sum_{0}^{\infty} \frac{(-1)^{k}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k}
$$

Remark. There are many relations between Bessel functions. For example,

$$
\begin{aligned}
& J_{0}(x)=\sum_{0}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& \Rightarrow \quad J_{0}^{\prime}(x)=\sum_{1}^{\infty}(2 k) \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k-1}\left(\frac{1}{2}\right)=\sum_{1}^{\infty} \frac{(-1)^{k}}{k!(k-1)!}\left(\frac{x}{2}\right)^{2 k-1} \\
& =\sum_{0}^{\infty} \frac{(-1)^{n+1}}{(n+1)!n!}\left(\frac{x}{2}\right)^{2 n+1}=-J_{1}(x)
\end{aligned}
$$

The graph of $J_{0}(x)$ and $J_{1}(x)$ are given below.

$$
J_{0}(x)
$$

$J_{1}(x)$

