
Ma 530 Series Solution of DEs

Solution by Power Series

We shall now study ways of solving the second order differential equation

a2x
d2y
dx2

 a1x
dy
dx  a0xy  fx

This equation has variable coefficients. In any interval where a2x  0, we can divide the equation by
a2x to obtain y  Pxy  Qxy  Rx. We shall consider only the homogeneous case

y  Pxy  Qxy  0. 1

This equation will be solved by power series. It will turn out that near a point x  a
y  a0  a1x  a  a2x  a2   anx  an 


n0


anx  an

where a0,a1,..., an,... are constants to be determined. This series is the Taylor series expansion of the
solution y.
Let us first begin with two definitions.

Definition 1. A function fx is said to be analytic at x  a if it can be expanded in a power series, in
powers of x  a, which converges to fx in an open interval containing x  a. This series is the Taylor
series for fx.

Note: A necessary condition for fx to be analytic is that fx and its derivatives of all orders exist at
x  a.
fx analytic 

fx 
n0

 fna
n! x  an

This series is called the Taylor series of fx near x  a.
When the point x  a  0, the series is called MacLaurin series. If fx is not analytic at x  a, it is
said to be singular or to have a singularity at x  a.

Examples:
1. fx  1

1x  1  x1 is analytic at x  0
fx  1  x21  1  x2
fx  21  x3 fx  3.21  x4

fnx  n!1  xn1 so that at x  0 fn0  n!
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 Taylor expansion for 1
1x near x  0 is

fx  n0
 n!

n! x  0
n n0

 xn  1  x  x2     .
However, 1

1x is not analytic at x  1, since it approaches  as x  1.  no power series in powers of
x  1.

2. fx  x 1n n  2,... is not analytic at x  0
fx  1

n x
1
n 1 n  2  1

n  1  0  fx at x  0 does not exist.

3. fx  1
x21

analytic for all real x. However, for x complex, x  i is a singularity.

4. What are the singularities of fx  x  1
x3  2x2  x

?

fx  x  1
xx2  2x  1

 x  1
xx  12

 1
xx  1

 x  0 and x  1 are singularities.

Definition 2. The point x  a is called an ordinary point of the differential equation

y  Pxy  Qxy  0 1

if both Px and Qx are analytic at x  a. If either Px or Qx is not analytic at x  a, then this
point is called a singular point or singularity of the differential equation 1.

Example
x2  3x  2y  x y  x2y  0

We rewrite the equation as

y 
x y

x  2x  1 
x2

x  2x  1 y  0

Thus Px  x
x2x1 and Qx  x2

x2x1 . Thus the equation has singularities at
x  2, 1, and 0. x  0 is a singular point because the derivative of Px at 0 is not defined. All other
points are ordinary points.

The theorem below gives conditions which insure the existence of a power series solution.

Theorem. If x  a is an ordinary point of the differential equation 1, then  two linearly independent
power-series solutions of the form

y 
n0


anx  an
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These solutions will be valid in some interval containing x  a.

Method of Solution Near an Ordinary Point.

Example Consider the differential equation
y  xy  2y  0.

Here Px  x and Qx  2. They are both analytic  x, and in particular at x  0. Hence by the
above theorem  two solutions of form

y 
n0


anxn.

(Here a  0 The coefficients an are determined from the differential equation as follows.
Now

y 
n1


annxn1

and

y 
n2


annn  1xn2

.
The differential equation 


n2


annn  1xn2  x 

n1


annxn1  2 

n0


anxn  0.

or

2a0  
n2


annn  1xn2 

n1


ann  2 xn  0. 

We shall combine the coefficients of like powers of x in  to get one power series. To do this we must
put each term in the equation in the same form. This is accomplished by “shifting” the second series in
.

If we let n  k  2 in the second series,  becomes

2a0 
n2


annn  1xn2 

k3


ak2kxk2  0.

Since n and k are “dummy” place keepers, we may replace them by m. Doing this yields

2a0  2  1  a2 
m3


ammm  1  am2mxm2  0.

Remark. If0
 anx  an  0  x in some interval  an  0 for n  0,1,2,...

Thus we have from the above equation
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1. 2a2  a0  0 or a2  a0
2. m  3  3  2a3  3a1  0 or 2a3  a1  a3   12 a1
3. m  4  4  3a4  4a2  0 or a4   13 a2   13 a0
4.  mm  1am  mam2  0 or am   1

m1 am2 for m  3.
The expression in 4 is called the recurrence relation. Continuing we have for m  5 and m  6
a5   14 a3  

1
4 

1
2 a1 

1
42 a1 and a6   15 a4  

1
5 

1
3 a0  

1
53 a0

Hence the solution is

y  a0  a1  a2x2   a01  x2  13 x
4  1

5  3 x
6   a1x  12 x

3  1
4  2 x

5 .

It can be shown that in general

y  a0
n0


1n 1

3  5   2n  1 x
2n . . .   a1

n1


1n1x2n1
2  4   2n  2 . . . .

The above is the general solution of differential equation with two arbitrary constants a0 and a1.
Question: Where is the series solution valid? We shall use the ratio test to determine where the series
converges. Recall that if limn bnk

bn
 L and L  1 bn converges.

Recall that we have am   1
m1 am2 .

 limm am2xm2
amxm

 limm
 1
m1 amx

2

am  limm 1
m1 x

2  0

 the series converges  x.

In general we have the following result about the convergence of a series solution.

Theorem. If x  a is an ordinary point for the differential equation
y  Pxy  Qxy  0,

then  2 L.I. series solutions of the form

yx 
0


anx  an.

These series converge at least  values of x such that  x  a  R, where R is the distance from the
point x  a to the nearest singular point of the D.E. in the complex plane.

Remark. The distance between z1  a1  b1i and z2  a2  b2i is
 z1  z2  a1  a22  b1  b22

1
2 .

Example x2  3x  2y  x y  x2y  0


y 
x

x  2x  1 y
  x2

x  2x  1 y  0

x  2, 1 are singular points. Also x  0 is a singular point due to the x .  a solution of form
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y  anx  10n

about 10. By the theorem this converges x such that  x  10  R. Since x  2 is the nearest
singularity to x  10, R  10  2  8.

Example Find the general solution near x  0 of
y  xy  0.

y  0
 anxn y  0

 nanxn1 1
 nanxn1 and y  1



nn  1anxn2  2
 nn  1anxn2.

The differential equation 


2


annn  1xn2 

0


anxn1  0.

We must line up like powers of x. To do this both series must be of the same form. Consider


2


annn  1xn2  

k1


k  3k  2ak3xk1

where we have let n  2  k  1  n  k  3 or k  n  3. When n  2  k  1. The D.E. may now
be written as


k1


k  3k  2ak3xk1 

0


akxk1  0



21a2 
0


k  3k  2ak3  akxk1  0

 a2  0 and
ak3 

ak
k  3k  2 k  0,1,2, . . .

k  0  a3 
a0
32  a0

6
k  1  a4 

a1
43  a1

12 k  2  a5 
a2
54  0

k  3  a6 
a3
65  a0

306  a0
180

k  4  a7 
a4
76  a1

7612
k  5  a8  0
k  6  a9 

a6
98  a0

98180 etc.

Hence

y 
k0


akxk  a01  16 x

3  1
560 x

6  1
72  180 x

9   a1x  1
12 x

4  1
7  6  12 x

7 .

Example This example is a video slide show. Slide Example
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You will need Real Player to view this. To get it click on Real Player.

Solution Near a Singular Point
Consider now the case where we seek the solution of

y  Pxy  Qxy  0 1
near a singular point of either P or Q , i.e. a point where either P or Q are not analytic. We shall use the
Method of Frobenius. We cannot treat all singularities. We begin with a definition.
Definition. A point x  a is said to be a regular singular point or a regular singularity of the D.E. (1) if
1. x  a is a singular point of (1); and
2. x  aPx and x  a2Qx are analytic at x  a .
Remark:
If fx analytic at x  a 

fx 
0


anx  an

If fx is not analytic at x  a

fx 



anx  an    a3

x  a3
 a2
x  a2

 a1
x  a  a0  a1x  a 

Thus the conditions x  aPx and x  a2Qx are analytic at x  a restrict the amount of singularity
that Px and Qx can have.
Remark. Condition 2  x  aPx and x  a2Qx have Taylor series at x  a . If x  a is a
singular point which is not regular, it is called an irregular singular point.
Ex. (1) x2y  pxy  qy  0 Euler’s equation. This may be rewritten as

y  px y
  q

x2
y  0

x  0 is a regular singular point since xPx  x px  p and x2Qx  x2 q
x2

 q

(2)
y  2x y

  3
xx  13

y  0

It is clear that x  0 and x  1 are singular points. We must examine each singularity separately to see
if it is regular or irregular. Consider x  0 first. Now xPx  2 which is analytic near x  0. also
x2Qx  3x

x13
which is also analytic near x  0. Therefore x  0 is a regular singular point.

Now consider x  1. Then a  1 and

x  1Px  2x  1
x

which is analytic at x  1.
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x  12Qx  3
xx  1

which is not analytic at x  1. x  1 is an irregular singular point.
Note that we must treat each singular point individually.
Near a regular singular point we have
Theorem. At a regular singular point x  a of the differential equation

y  Pxy  Qxy  0
there is at least one solution which possesses an expansion of the form

y  x  a
n0


anx  an.

In order to see how one solves equation (1) near a regular singular point x  a in the easiest manner we
shall assume a  0. If a  0, then let t  x  a in the D.E. and solve in terms of t. t  0 is then a
regular singular point.
Now

y  x
0


anxn 

0


anxn



y 
0


n  anxn1

and

y 
0


n  n    1anxn2

Now xPx and x2Qx are analytic at x  0  that

xPx 
0


pnxn

and

x2Qx 
0


qnxn

The D.E. y  Pxy  Qxy  0 may be multiplied by x2 to get
x2y  x2Pxy  x2Qxy  0

 x2  1a0x2   1a1x1    
xp0  p1x a0x1    1a1x    

q0  q1x a0x  a1x1   0
   1a0x    1a1x1    

p0a0x p1x1a0  p0  1a1x1    
q0a0x  q0a1x1  q1a0x1      0

Setting the coefficients of x equal to 0    1a0  p0a0  q0a0  0
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   1  p0  q0  0 or

2  p0  1  q0  0 2
Equation 2 is called the indicial equation. This result is not surprising in light of the results we got for
Euler’s equation. Therefore if  is a root of (2)  y   anxn is a solution of (1) for this . The an s
are determined from the D.E.
Remarks: Since xPx  pnxn and x2Qx  qnxn, p0 and qo are the first terms in the Taylor
expansions of xPx and x2Qx. Thus

p0  limx0xPx and q0  limx0x
2Px

Ex. Find a series solution of the D.E.
9x2y  x  2y  0

near x  0
We rewrite the equation as

y  x  2
9x2

y  0

Px  0 Qx  x2
9x2

so x  0 is regular singular point.

xPx  0  pnxn so pn  0  p0  0
x2Qx  x2

9  2
9  x

9  qnxn  q0  limx0 2
9  x

9  2
9

Therefore equation (2) for  becomes

2    29  0

or
  23  

1
3   0

and therefore   2
3 or   1

3 .

 solutions of the form y  x
1
3 0

 anxn and y  x
2
3 0

 bnxn.
Consider the case   1

3 Since

y 
n0


anxn

1
3

y 
n0


n  13 anx

n 23 and y 
n0


n  13 n 

2
3 anx

n 53

D.E. 9x2 y  x  2y  0 

9
n0


n  13 n  23 anxn

1
3  x

n0


anxn

1
3  2

n0


anxn

1
3  0

or


n0


9 n 13 n 23 an  2an xn

1
3 

n0


anxn

4
3  0
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


0


3n  13n  2  2anxn

1
3 

k1


ak1x

k 13  0

Let k  1
3  n  4

3  k  n  1 


0


9n2  3n  2  2anxn

1
3 

k1


ak1x

k 13  0.

Or


1


3m3m  1am  am1x

m 13  0



am  am1
3m3m  1

m  1  a1 
a0
32 m  2  a2  

a1
65   a0

6532  a0
2356

m  3  a3  
a0

235689

Therefore one solution is y1  a0x
1
3 1  x

32  x2
2356 

x3
235689 

For   2
3 one gets

y2  b0x
2
3 1  x

34  x2
3467 

x3
3467910 

For the method of Frobenius we have
Theorem. If the differential equation

y  Pxy  Qxy  0
has a regular singularity at x  0 and if the roots 1 and 2 of the indicial equation are distinct and do
not differ by an integer, then there are two linearly independent solutions of the form

y1x  x1
0


anxn and y2x  x2

0


bnxn

Bessel’s Equation
The equation

x2y xy  x2  p2y  0 1
is known as Bessel’s equation. Here p is constant. We shall assume p  0 . The solutions are called
Bessel functions. Now 1 

y  1x y
  1  p

2

x2
y  0

 we have a regular singular point at x  0.
Therefore we assume y  0

 anxn

Now xPx  x 1x   1  p0  1 and x2Qx  x2 1 
p2

x2
  x2  p2  q0  p2.

Therefore, the indicial equation, 2  p0  1  q0  0, in this case is

9



 2  p2  0 or   p
Consider   p  0 
y  0

 anxnp y  0
n  panxnp1 y  0

n  pn  p  1anxnp2

D.E. 1 


0


n  pn  p  1anxnp 

0


n  panxnp 

0


anxnp2  p2

0


anxnp  0




0


n  pn  p  1  n  p  p2anxnp 

0


anxnp2  0




0


n  p2  n  p  n  p  p2anxnp 

0


anxnp2  0

or


1


nn  2panxnp 

k2


ak2xkp  0

In the last series we have made the substitution k  p  n  p  2 which implies n  k  2. Replacing
the “dummy” variables n and k by m leads to


11  2pa1x1p 
2


mm  2pam  am2xmp  0

 1  2pa1  0 an  an2
nn2p n  2,3, . . .

 a1  0 and a2 
a0

222p 
a0
4p2

a3  0 and a4   1
442p a2   a0

42p12p2
a5  0 and a6  

a4
662p  

a0
4262p32p1p2

 a0
433!p1p2p3

In general

a2k  1k 1
k!4kp  kp  k  1. . . p  2p  1

a0

Therefore one solution is

y  a0 
k0


1k xp2k

k!4kp  kp  k  1  p  2p  1

By a proper choice of a0 we can write y as the conventional Bessel function. Let

a0  1
2pp  1

where  is the gamma function defined by
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s  
0


xs1exdx

For s  n an integer we may show that n  n  1!
Also s  s  1s  1 s  1



Jpx 
k0


1k xp2k

k!22k2pp  1p  k. . . p  1


0


1  1k

k!p  k  1
x
2

p2k

This is called a Bessel Function of the first kind of order p.

It may be shown Jp converges x  0 if p  0. For the case p  n an integer p  k  1  n  k! .


Jnx 
0


1k

k!n  k!
x
2

n2k

Remark. There are many relations between Bessel functions. For example,

J0x 
0


1k

k!2
x
2

2k



J0 x 
1


2k 1

k

k!2
x
2

2k1
 12  

1


1k

k!k  1!
x
2

2k1


0


1n1
n  1!n!

x
2

2n1
  J1x

The graph of J0x and J1x are given below.
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