%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Scientific Word Wrap/Unwrap Version 2.5 % % Scientific Word Wrap/Unwrap Version 3.0 % % % % If you are separating the files in this message by hand, you will % % need to identify the file type and place it in the appropriate % % directory. The possible types are: Document, DocAssoc, Other, % % Macro, Style, Graphic, PastedPict, and PlotPict. Extract files % % tagged as Document, DocAssoc, or Other into your TeX source file % % directory. Macro files go into your TeX macros directory. Style % % files are used by Scientific Word and do not need to be extracted. % % Graphic, PastedPict, and PlotPict files should be placed in a % % graphics directory. % % % % Graphic files need to be converted from the text format (this is % % done for e-mail compatability) to the original 8-bit binary format. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Files included: % % % % "/document/Lecture4.tex", Document, 24765, 9/7/1999, 15:31:30, "" % % "/document/6-5b.bmp", ImportPict, 25982, 9/4/1997, 13:32:02, "" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% Start /document/Lecture4.tex %%%%%%%%%%%%%%%%%%%% %% This document created by Scientific Notebook (R) Version 3.0 \documentclass[12pt,thmsa]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{sw20jart} %TCIDATA{TCIstyle=article/art4.lat,jart,sw20jart} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Created=Mon Aug 19 14:52:24 1996} %TCIDATA{LastRevised=Tuesday, September 07, 1999 11:31:27} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=Lab Report.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{AllPages= %H=36 %F=36,\PARA{035

IV - \thepage } %} \input{tcilatex} \begin{document} \section{Ma 681} \vspace{1pt} \section{Lecture 4} \vspace{1pt} Continuity of a Complex Function \vspace{1pt} Note: In all that follows $f(z)$ is assumed to be a \textit{single-valued} function unless indicated otherwise. \vspace{1pt} Definition: We say\textit{\ }that a complex function $f(z)$ defined in a domain $D$ \textit{approaches the limit }$A$ \textit{\ as }$z$ \textit{% approaches a point }$z_{0}$ in $D$ and we write \vspace{1pt} \begin{center} $\lim_{z\rightarrow z_{0}}f(z)=A$ \vspace{1pt} \end{center} or $f(z)\rightarrow A$ as $z\rightarrow z_{0}$ if given any $\in $ $>0$ $% \exists $ a number $\delta =\delta (\in )$ $>0$ such that \vspace{1pt} \begin{center} $\left| f(z)-A\right| <\in $ \vspace{1pt} \end{center} for all $z$ such that \vspace{1pt} \begin{center} $0<\left| z-z_{0}\right| <\delta .$ \vspace{1pt} \end{center} Suppose that in addition $A=f(z_{0})$, so that \vspace{1pt} \begin{center} $\lim_{z\rightarrow z_{0}}f(z)=f(z_{0}).$ \vspace{1pt} \end{center} Then we say that $f(z)$ is \textit{continuous} \textit{at }$z_{0}.$ \vspace{1pt} Remark: Thus $f(z)$ is said to be \textit{continuous} at $z_{0}$ if given $% \in $ $>0$ $\exists $ a number $\delta (\in ,z_{0})>0$ such that \vspace{1pt} \begin{center} $\left| f(z)-f(z_{0})\right| <$ $\in $ \vspace{1pt} \end{center} $\forall $ $z$ such that \vspace{1pt} \begin{center} $\left| z-z_{0}\right| <\delta $ \vspace{1pt} \end{center} Geometrically this means that the values of $w=f(z)$ at every point of a sufficiently small neighborhood $\left| z-z_{0}\right| <\delta $ of the point $z_{0}$ all lie inside an arbitrarily small neighborhood $\left| w-w_{0}\right| <\in $ of the point $w_{0}=f(z_{0}).$ \FRAME{dtbpF}{4.523in}{2.8971in}{0pt}{}{}{6-5b.bmp}{\special{language "Scientific Word";type "GRAPHIC";maintain-aspect-ratio TRUE;display "USEDEF";valid_file "F";width 4.523in;height 2.8971in;depth 0pt;original-width 424.5625pt;original-height 271pt;cropleft "0";croptop "1";cropright "1";cropbottom "0";filename '6-5b.bmp';file-properties "XNPEU";}} Example: The function\qquad $w=z^{n}\qquad (n=1,2,3,\ldots )$ \vspace{1pt}is continuous in the whole finite plane. In fact, setting $% w_{0}=z_{0}^{n}$ where $z_{0}$ is any finite point, we have \vspace{1pt} \begin{center} $w-w_{0}=z^{n}-z_{0}^{n}=(z-z_{0})(z^{n-1}+z^{n-2}z_{0}+\cdots +z_{0}^{n-1}). $ \vspace{1pt} \end{center} $\Longrightarrow \qquad \left| w-w_{0}\right| =\left| z-z_{0}\right| \left| z^{n-1}+z^{n-2}z_{0}+\cdots +z_{0}^{n-1}\right| \leq \left| z-z_{0}\right| (r^{n-1}+r^{n-2}r_{0}+\cdots +r_{0}^{n-1})$ \vspace{1pt} where $r=\left| z\right| $ and $r_{0}=\left| z_{0}\right| .$ But $\left| z-z_{0}\right| <\delta $ $\Longrightarrow $ \vspace{1pt} \begin{center} $r=\left| z\right| =\left| z_{0}+(z-z_{0})\right| \leq \left| z_{0}\right| +\left| z-z_{0}\right| 0$ $\exists $ a number $\delta =\delta (\in )$ such that \vspace{1pt} \begin{center} $\left| f(z^{\prime })-f(z^{\prime \prime })\right| <\in $ \vspace{1pt} \end{center} for \textit{all} points $z^{\prime },z^{\prime \prime }$ in $D$ such that \vspace{1pt} \begin{center} $\left| z^{\prime }-z^{\prime \prime }\right| <\delta $ \vspace{1pt} \end{center} Remark: Unlike the case of ordinary continuity, it is meaningless to talk about uniform continuity at a single point $z_{0}$. The key observation here is that the $\delta $ in the above definition must be \textit{independent} of the points $z^{\prime }$ and $z^{\prime \prime }$ in $D.$ If $f(z)$ is uniformly continuous in $D$, then it is certainly continuous in $D.$ However, a function can be continuous in $D$ without being uniformly continuous in $D.$ In the real case continuity in a closed bounded domain implies uniform continuity there. We have a similar result in the complex case. \vspace{1pt} Theorem: If $f(z)$ is continuous in a closed bounded domain $\bar{D}$, then it is uniformly continuous in $\bar{D}.$ \vspace{1pt} Differentiability \vspace{1pt} Definition: A function $w=f(z)$ defined in a domain $D$ is said to be \textit{differentiable} at a point $z\in D$ if \begin{center} $\lim_{h\rightarrow 0}\frac{f(z+h)-f(z)}{h}\qquad \qquad (1)$ \vspace{1pt} \end{center} exits and its value is \textit{independent }of the way in which $% h\rightarrow 0.$ This limit is denoted by $f^{\prime }(z)$ or $\frac{dw}{dz}$ and is called the \textit{derivative} of $f(z)$ at the point $z.$ \vspace{1pt} Remarks: That is, $f(z)$ is differentiable at $z$ if $\exists $ a new number $f^{\prime }(z)$ associated with the point $z$ in such a way that given an arbitrary $\in $ $>0$ $\ \exists $ a $\delta (\in ,z)$ such that \vspace{1pt} \begin{center} $\left| \frac{f(z+h)-f(z)}{h}-f^{\prime }(z)\right| <\in $ \vspace{1pt} \end{center} whenever $z+h\in D$ and $\left| h\right| <\delta .$ \vspace{1pt} Alternative Definition: $f(z)$ is differentiable at $z$ and has derivative $% f^{\prime }(z)$ there, $\Longleftrightarrow $ for any sequence $\{z_{n}\}$ tending to $z,$ the sequence $\left\{ \frac{f(z_{n})-f(z)}{z_{n}-z}\right\} \rightarrow f^{\prime }(z).$ \vspace{1pt} \vspace{1pt}Example: let $f(z)=z^{2}.$ Then $f^{\prime }(z)=2z$ $\forall $ $% z $ because \vspace{1pt} \begin{center} $f^{\prime }(z)=\lim_{h\rightarrow 0}\frac{(z+h)^{2}-z^{2}}{h}% =\lim_{h\rightarrow 0}\frac{2zh+h^{2}}{h}=\lim_{h\rightarrow 0}(2z+h)=2z$ \end{center} \vspace{1pt} Remark: Differentiability$\Longrightarrow $continuity. However, the converse is not true. \vspace{1pt} Example: The function $f(z)=\left| z\right| $ is continuous, but it is not differentiable. \vspace{1pt} Consider\qquad \qquad \qquad \qquad $\lim_{h\rightarrow 0}\frac{\left| z+h\right| -\left| z\right| }{h}\qquad \qquad (2)$ \vspace{1pt} and let $z=r(\cos \theta +i\sin \theta ).$ \vspace{1pt} For $\theta =\theta _{0},$ a constant, let $h=\rho (\cos \theta _{0}+i\sin \theta _{0}).$ Then $(2)$ becomes \vspace{1pt} \begin{center} $\lim_{\rho \rightarrow 0}\frac{r+\rho -r}{\rho (\cos \theta _{0}+i\sin \theta _{0})}=(\cos \theta _{0}-i\sin \theta _{0})$ \vspace{1pt} \end{center} This last expression is clearly \textit{not} independent of the approach to $% z.$ \vspace{1pt} Definition: If a complex function $w=f(z)$ is defined and differentiable at all points of a domain $D$, we say that $f(z)$ is an \textit{analytic (or regular or holomorphic)} function in $D.$ \vspace{1pt} Remark: The statement, ``$f(z)$ is an analytic function'' means that $% \exists $ \textit{some} domain of analyticity. \vspace{1pt} Definition: An analytic function is said to be \textit{regular at a point} $% z_{0}$ if it is regular in a neighborhood $\left| z-z_{0}\right| <\in $ of $% z_{0}.$ \vspace{1pt} Example: $f(z)=\left| z\right| ^{2}$ is differentiable at the origin but it is not regular there, since it is not differentiable anywhere else. (Homework) \begin{center} \vspace{1pt} \end{center} Definition: $z_{0}$ is called a \textit{singular point }of $f\left( z\right) $ if $f\left( z\right) $ is not differentiable at $z_{0}$, but if every neighborhood of $z_{0}$ contains points at which $f\left( z\right) $ is differentiable. \vspace{1pt} Remark: $z^{n}$ ($n$ a positive integer) is a regular function of $z$ at all finite points of the complex plane. \vspace{1pt} Remark: Given that there is a complete analogy between the definition $(1)$ of the complex derivative and the corresponding formula \begin{center} \vspace{1pt} \end{center} \vspace{1pt} \begin{center} $f^{\prime }(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$ \vspace{1pt} \end{center} defining the definition of a real function, all of the standard formulae for derivatives of sums, products, quotients, etc., also hold in the complex case. Thus if $f(z)$ and $g(z)$ are differentiable at a point $z$ \ and $% c_{1}$ and $c_{2}$ are any complex constants, then so are $c_{1}f(z)\pm c_{2}g(z),$ $c_{1}f(z)$, $f(z)g\left( z\right) ,$ $f\left( z\right) /g\left( z\right) ,$ (provided $g\left( z\right) \neq 0),$ and \vspace{1pt} \begin{center} $\lbrack c_{1}f(z)\pm c_{2}g(z)\rbrack =c_{1}f^{\prime }\left( z\right) \pm c_{2}g^{\prime }\left( z\right) $ \vspace{1pt} $\lbrack c_{1}f(z)\rbrack ^{\prime }=c_{1}f^{\prime }\left( z\right) $ \vspace{1pt} $\lbrack f(z)g\left( z\right) \rbrack ^{\prime }=f^{\prime }\left( z\right) g(z)+f\left( z\right) g^{\prime }\left( z\right) $ \vspace{1pt} $\left[ \frac{f(z)}{g\left( z\right) }\right] ^{\prime }=\frac{f^{\prime }\left( z\right) g\left( z\right) -f\left( z\right) g^{\prime }\left( z\right) }{g^{2}(z)}\qquad g\left( z\right) \neq 0$ \vspace{1pt} \vspace{1pt} \end{center} Thus every \textit{polynomial} $f\left( z\right) =a_{0}+a_{1}z+\cdots +a_{n}z^{n}$ \ (where $a_{0},a_{1},\ldots ,a_{n}$ are complex constants) is regular in the finite complex plane, and every \textit{rational} function \vspace{1pt} \begin{center} \vspace{1pt}$\frac{a_{0}+a_{1}z+\cdots +a_{n}z^{n}}{b_{0}+b_{1}z+\cdots b_{m}z^{m}}$ \vspace{1pt} \end{center} (where the $a^{\prime }s$ and $b^{\prime }s$ are constants) is regular in the finite complex plane, except at the zeroes of the denominator. \vspace{1pt} Example: a zero of the denominator is a singular point of a rational function. \vspace{1pt} Theorem: Suppose $w=g(z)$ is an analytic function in a domain $D$ of the $% z-plane$, and when $z\in D$ $\ w=g(z)$ lies in a domain $D^{\prime }$ of the complex $w-plane.$ Also, suppose that $F\lbrack w\rbrack $ is an analytic function of $w$ in $D^{\prime }.$ Then $f(z)=F\lbrack g\left( z\right) \rbrack $ is an analytic function of $z$ in $D.$ \vspace{1pt} In other words, an analytic function of an analytic function is again an analytic function. \vspace{1pt} The derivative of $f\left( z\right) $ is given by the chain rule \vspace{1pt} \begin{center} $f^{\prime }\left( z\right) $\vspace{1pt}$=F^{\prime }\left[ w\right] g^{\prime }\left( z\right) =F^{\prime }\left[ g\left( z\right) \right] g^{\prime }\left( z\right) $ \vspace{1pt} \end{center} Example: If $D$ is $\left| z\right| <1,$ and $w=g\left( z\right) =5z$ then $% D^{\prime }$ is $\left| w\right| <5.$ If $D:\left| z\right| >0$ and $w=g\left( z\right) =\frac{1}{z}$, then $% D^{\prime }:\left| w<\infty \right| $ \vspace{1pt} \subsection{The Cauchy-Riemann Equations} \vspace{1pt} Suppose that $f\left( z\right) =f\left( x+iy\right) =u\left( x,y\right) +iv\left( x,y\right) $ is differentiable at a point $z.$ We shall show that differentiability implies a simple but characteristic property of $u\left( x,y\right) $ and $v\left( x,y\right) .$ \vspace{1pt} Recall that when $f^{\prime }\left( z\right) $ exists then the value of \vspace{1pt} \begin{center} $f^{\prime }\left( z\right) =\lim_{h\rightarrow 0}\frac{f\left( z+h\right) -f\left( z\right) }{h}$ \vspace{1pt} \end{center} is independent of the way in which $h\rightarrow 0.$ Let $h=\Delta x+i\Delta y$ and consider the difference quotient \vspace{1pt} \begin{center} $\frac{f\left( z+h\right) -f\left( z\right) }{h}=\frac{\lbrack u(x+\Delta x,% \text{ }y+\Delta y)+iv(x+\Delta x,\text{ }y+\Delta y)\rbrack -\lbrack u\left( x,y\right) +iv(x,y)\rbrack }{\Delta x+i\Delta y}.\qquad \qquad (1)$ \vspace{1pt} \end{center} We shall let $h=\Delta x+i\Delta y$ go to zero in two different ways: \vspace{1pt} 1) Let $\Delta y=0,$ $\Delta x>0,$ and $\Delta x\rightarrow 0.$ Then $(1)$ becomes \vspace{1pt} \begin{center} $\frac{f\left( z+h\right) -f\left( z\right) }{h}=\frac{\lbrack u(x+\Delta x,y)+iv(x+\Delta x,y)\rbrack -\lbrack u\left( x,y\right) +iv(x,y)\rbrack }{% \Delta x}=\frac{u\left( x+\Delta x,y\right) -u\left( x,y\right) }{\Delta x}+i% \frac{v\left( x+\Delta x,y\right) -v\left( x,y\right) }{\Delta x}\qquad (2)$ \vspace{1pt} \end{center} Since the limit of the left hand side exist and equals $f^{\prime }\left( z\right) $ then the limit of the right hand side must also exist, and therefore \vspace{1pt} $\lim_{\Delta x\rightarrow 0}\frac{u\left( x+\Delta x,y\right) -u\left( x,y\right) }{\Delta x}$ exists and $=$ $\func{Re}\lbrack f^{\prime }(z)\rbrack $ and \ $\lim_{\Delta x\rightarrow 0}\frac{v\left( x+\Delta x,y\right) -v\left( x,y\right) }{\Delta x}$ also exists and $=\func{Im}% \lbrack f^{\prime }\left( z\right) \rbrack $. \ Hence $\frac{\partial u}{% \partial x}$ and $\frac{\partial v}{\partial x}$ exist at $z=x+iy$ and \vspace{1pt} \begin{center} $f^{\prime }\left( z\right) =u_{x}+iv_{x}\qquad \qquad (3)$ \vspace{1pt} \end{center} 2) Let $\Delta x=0,$ $\Delta y>0$ and $\Delta y\rightarrow 0.$ Then $(1)$ becomes \vspace{1pt} \begin{center} $\frac{f\left( z+h\right) -f\left( z\right) }{h}=\frac{u\left( x,y+i\Delta y\right) -u\left( x,y\right) }{i\Delta y}+i\frac{v\left( x,y+i\Delta y\right) -v\left( x,y\right) }{i\Delta y}\qquad \qquad (4)$ \vspace{1pt} \end{center} Let $\Delta y\rightarrow 0.$ $\Longrightarrow u_{y}$ and $v_{y}$ exist at the point $z$ and \vspace{1pt} \begin{center} $f^{\prime }\left( z\right) =v_{y}-iu_{y}\qquad \qquad (5)$ \vspace{1pt} \end{center} From $(3)$ and $\left( 5\right) $ we have that \vspace{1pt} \begin{center} $u_{x}=v_{y}\qquad $and\qquad $u_{y}=-v_{x}\qquad \qquad (6)$ \vspace{1pt} \end{center} These are called the Cauchy-Riemann equations. \vspace{1pt} Theorem: A necessary condition for $f\left( z\right) $ to be differentiable at $z$ is that the four partial derivatives with respect to $x$ and $y$ exist at $z=x+iy$ and are related there by Equations $(6).$ \vspace{1pt} Theorem: If $f\left( z\right) $ is regular in a domain $D,$ and its derivative is zero at all points of $D$, then $f\left( z\right) $ \ equals a constant in $D.$ Equivalently, Two functions which are regular in the same domain $D$ \ and whose derivatives coincide at all points of $D$ differ in $% D $ only by a constant. \vspace{1pt} Proof: $f^{\prime }\left( z\right) =0\Longrightarrow u_{x}=u_{y}=v_{x}=v_{y}=0$ throughout $D.$ Hence $u\left( x,y\right) $ and $% v\left( x,y\right) $ and thus $f\left( z\right) $ are constant throughout $% D. $ \vspace{1pt} Example: $\ f(z)=\func{Re}\lbrack z\rbrack =x.$ here $u=x$ and $v=0$ so that $u_{x}=1,u_{y}=v_{x}=v_{y}=0.$ Thus the C-R Equations are satisfied nowhere so that $f(z)=x$ is differentiable nowhere. \vspace{1pt} Example: $f(z)=\left| z\right| ^{2}=x^{2}+y^{2}.$ Here $u=x^{2}+y^{2}$ and $% v=0,$ so that $u_{x}=2x,$ $u_{y}=2y$ and $v_{x}=v_{y}=0.$ Therefore the C-R Equations hold only at the origin. Thus $z=0$ is the only possible point where $\left| z\right| ^{2}$ might be differentiable. That this is indeed the case may be determined by a separate computation. \vspace{1pt} Remark: Satisfaction of the Cauchy-Riemann equations is a necessary condition for $f(z)=u+iv$ to be differentiable at a point. however, it is not sufficient as the example below shows. \vspace{1pt} Example: Let $f(z)=\sqrt{\left| xy\right| }.$ The $u=\sqrt{\left| xy\right| } $ and $v=0.$ Using the definition it is not hard to show that at $(0,0)$ $\ u_{x}=u_{y}=0$, whereas it is obvious that $v_{x}=v_{y}=0$ everywhere$.$ Hence the C-R Equations hold at the origin $z=0.$ However, $f\left( z\right) $ is not differentiable at $z=0$ \ since the difference quotient \vspace{1pt} \begin{center} $\frac{f\left( 0+h\right) -f\left( 0\right) }{h}=\frac{f\left( h\right) }{h}=% \frac{\sqrt{\Delta x\Delta y}}{\Delta x+i\Delta y}$ \vspace{1pt} \end{center} for $h=\Delta x+i\Delta y.$ If we let $\Delta x=\alpha r$ and $\Delta y=\beta r,$ where $\alpha $ and $\beta $ are real and constant, and $r$ is a real parameter (thus $h\rightarrow 0$ along any straight line), then \vspace{1pt} \begin{center} $\lim_{h\rightarrow 0}\frac{f\left( h\right) }{h}=\lim_{\Delta x,\Delta y\rightarrow 0}\frac{\sqrt{\Delta x\Delta y}}{\Delta x+i\Delta y}% =\lim_{r\rightarrow 0}\frac{r\sqrt{\left| \alpha \beta \right| }}{r(\alpha +i\beta )}=$ $\frac{\sqrt{\left| \alpha \beta \right| }}{(\alpha +i\beta )}$ \vspace{1pt} \end{center} Hence the limit is not independent of the path of approach, and therefore $% f(z)$ is not differentiable at $z=0.$ \vspace{1pt} Theorem: Suppose that the four partial derivatives of first order of $u$ and $v$ with respect to $x$ and $y$ \ exist and are continuous throughout a domain $D.$ Then for $f\left( z\right) =u\left( x,y\right) +iv\left( x,y\right) $ to be regular in $D,$ it is necessary and sufficient that the Cauchy-Riemann equations $(6)$ hold throughout $D.$ \vspace{1pt} Proof: Necessity - done. \vspace{1pt} Sufficiency: Since $u_{x},$ $u_{y,}$ $v_{x},$ and $v_{y}$ are continuous throughout $D$, then for $\left( x,y\right) \in D$ and $\left( x+\Delta x,y+\Delta y\right) $ in a neighborhood of $\left( x,y\right) $ which lies in $D,$ \vspace{1pt} $(7)\qquad \left\{ \begin{array}{l} u(x+\Delta x,y+\Delta y)-u\left( x,y\right) =\left[ u_{x}\left( x,y\right) +\in _{1}\right] \Delta x+\left[ u_{y}\left( x,y\right) +\in _{2}\right] \Delta y \\ \\ v(x+\Delta x,y+\Delta y)-v\left( x,y\right) =\left[ v_{x}\left( x,y\right) +\in _{3}\right] \Delta x+\left[ v_{y}\left( x,y\right) +\in _{4}\right] \Delta y% \end{array} \right. $ \vspace{1pt} where $\in _{i}=\in _{i}\left( x,y,\Delta x,\Delta y\right) \rightarrow 0$ as $h=\Delta x+i\Delta y\rightarrow 0\qquad (i=1,2,3,4).$ \vspace{1pt}We must show that the limit of \begin{center} $\frac{\Delta f}{h}=\frac{f\left( z+h\right) -f(z)}{h}=\frac{u(x+\Delta x,y+\Delta y)-u\left( x,y\right) }{\Delta x+i\Delta y}+i\frac{v(x+\Delta x,y+\Delta y)-v\left( x,y\right) }{\Delta x+i\Delta y}$ \end{center} \vspace{1pt} exists as $h\rightarrow 0.$ From $(7)$ \vspace{1pt} \begin{center} $\frac{\Delta f}{h}=\frac{\left[ u_{x}\left( x,y\right) +\in _{1}\right] \Delta x+\left[ u_{y}\left( x,y\right) +\in _{2}\right] \Delta y+i\{\left[ v_{x}\left( x,y\right) +\in _{3}\right] \Delta x+\left[ v_{y}\left( x,y\right) +\in _{4}\right] \Delta y\}}{\Delta x+i\Delta y}$ \vspace{1pt} $\frac{\Delta f}{h}=\frac{(u_{x}+iv_{x})\Delta x+i(v_{y}-iu_{y})\Delta y+\in _{1}\Delta x+\in _{3}\Delta y+i(\in _{2}\Delta y+\in _{4}\Delta y)}{\Delta x+i\Delta y}$ \vspace{1pt} $\frac{\Delta f}{h}=\frac{(u_{x}+iv_{x})(\Delta x+i\Delta y)+\in _{1}\Delta x+\in _{3}\Delta x+i(\in _{2}\Delta y+\in _{4}\Delta y)}{\Delta x+i\Delta y}$ \vspace{1pt} \end{center} by the Cauchy-Riemann equations. Thus \vspace{1pt} \begin{center} $\frac{\Delta f}{h}=(u_{x}+iv_{x})+\frac{\in _{1}\Delta x+\in _{3}\Delta x+i(\in _{2}\Delta y+\in _{4}\Delta y)}{\Delta x+i\Delta y}$ \vspace{1pt} \end{center} But $\left| \in _{1}\Delta x+\in _{3}\Delta x+i(\in _{2}\Delta y+\in _{4}\Delta y\right| \leq \left| \in _{1}+\in _{3}\right| \left| \Delta x\right| +\left| \in _{2}+\in _{4}\right| \left| \Delta y\right| $ and \vspace{1pt} \begin{center} $\frac{|\Delta x|}{\left| \Delta x+i\Delta y\right| }\leq 1\qquad $and $% \frac{|\Delta y|}{\left| \Delta x+i\Delta y\right| }\leq 1$ \vspace{1pt} $\left| \frac{\in _{1}\Delta x+\in _{3}\Delta x+i(\in _{2}\Delta y+\in _{4}\Delta y)}{\Delta x+i\Delta y}\right| \leq \left| \in _{1}\right| +\left| \in _{2}\right| +\left| \in _{3}\right| +\left| \in _{4}\right| \rightarrow 0\qquad $as $h\rightarrow 0$ \vspace{1pt} \end{center} Thus $\lim_{h\rightarrow 0}\frac{\Delta f}{h}=u_{x}+iv_{x}$ \ and is independent of the method of approach by $h.$ \vspace{1pt} Note: \ $f^{\prime }(z)=u_{x}+iv_{x}=v_{y}-iu_{y}$ \ by the C-R Equations. \vspace{1pt} \subsection{Harmonic Functions} \vspace{1pt} If we assume further the existence and continuity in $D$ of the second order partials derivatives of $u$ and $v$ with respect to $x$ and $y$ (which we will see later is automatically true), then fro the Cauchy-Riemann Equations we have \vspace{1pt} \begin{center} $\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}v}{\partial x\partial y}\qquad \frac{\partial ^{2}v}{\partial y\partial x}=-\frac{% \partial ^{2}u}{\partial y^{2}}$ \vspace{1pt} \end{center} $\Longrightarrow \qquad \qquad \qquad \qquad \frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}=0\qquad \qquad $and \qquad $% \frac{\partial ^{2}v}{\partial x^{2}}+\frac{\partial ^{2}v}{\partial y^{2}}% =0 $ \vspace{1pt} Thus $u$ and $v$ both satisfy Laplace's equation (or the potential equation) in two dimensions of the form \vspace{1pt} \begin{center} $\nabla ^{2}\phi =\phi _{xx}+\phi _{yy}=0$ \vspace{1pt} \end{center} Definition: A function that has second order partial derivatives in a domain $D$ \ and satisfies Laplace's equation in $D$ is called a \textit{harmonic (or potential)} function. \vspace{1pt} Theorem: Let $u(x,y)$ be harmonic in $D$ and let $N(z_{0})$ be any neighborhood of $z_{0}=x_{0}+iy_{0}$ that is contained in $D.$ Then $u\left( x,y\right) $ is the real part of an analytic function that is regular in $% N\left( z_{0}\right) .$ \vspace{1pt} Proof: See Hille, page 85 \vspace{1pt} Remark: The three dimensional version of Laplace's equation is \vspace{1pt} \begin{center} $\phi _{xx}+\phi _{yy}+\phi _{zz}=0$ \vspace{1pt} \end{center} A solution of this three dimensional equation is called a \textit{% logarithmic (or Newtonian) potential.} \end{document} %%%%%%%%%%%%%%%%%%%%%% End /document/Lecture4.tex %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%% Start /document/6-5b.bmp %%%%%%%%%%%%%%%%%%%%%% Bud_eA@@@@@@@xC@@@@J@@@@tH@@@`V@@@P@@D@@@@@@@@TY@@`sN@@@X{@@@@@@@@@@@@@@@@@ @@|Cp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp p Cp pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp p Cp pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp p Cp pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp p Cp pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp{ pCp { pCp{ pCp{ wpCp{ wp Cp{w pCp{ wpCp{ wpCp {w pCp{w pCp{ wpCp{ wpCp {w pCp{ wpCp{ wpCp{ w pCp{w pCp{ wpCp{ wpCp {w pCp{w pCp{ wpCp{ w pCp{w pCp{ wpCp{ wpCp {w pCp{w pCp{ wpCp{ wp Cp{w pCp{ wpCp{ wpCp {w pCp{w pCp{ wpCp{ wpCp {w pCp{ wpCp{ wpCp{ w pCp{w pCp{ wpCp{ wpCp {w pCp{w pCp{ wpCp{ w pCp{w pCp{ wpCp{ wpCp {w pCp{w pCp{ wpCp{ wp Cp{w pCp{ wpCp{ wpCp {w pCp@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@pCw pCp{AsG wpCp{ C_xwpCp {po_|cO@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@|wpCp{|g wxs`pCp{cx wG~ppCp{ _~swO~}C pCp{o}|w yOpCp{_~O wGqpCp{} wws_~pCp {s{_wOo} pCp{oow |_~pCp{{_s w{opCp{ w}w~ws pCp{o~w} }pCp{_~O ws~wpCp{} }wo{pCp {{~w_} pCp{w_w |_~pCp{~o woopCp{} ww_wp Cp{{{w~ {pCp{w} w}_pCp{o ~w{opCp {o~www pCp{_ww o{pCp{~{ w_}pCp{} }w_}pCp {}}w{ ~pCp{o~ ww_pCp{_ _woopCp{ __woo pCp{~ow_ }pCp{}w w~~pCp{} ww~~pCp {{{w} _pCp{{{w {opCp{w_ w{opCp{ w_www pCp{ooww wpCp{oo w~{pCp{oc Oow~{pCp {_Ogww}} pCp{_Ogww }}pCp{{Og{ w}}pCp{{ Og{w{_p~p Cp{{oALg{w{Og ~pCp{{yLg{ wwOgwpCp{w_Ng }wwOgwpCp {wOOg}wwOgw pCp{wgcO}ww OgwpCp{wos}} woOCg{pCp{o oA|~woOCg{pCp {o~wo~G@g {pCp{o~ wo~GPp{pCp{o ~w_~Gp}pCp{ o~w_~gt} pCp{__w_ |Cp}pCp{__ w_}pCp{_ _w_}pCp {__w~ ~pCp{__w ~~pCp{__ w~~pCp{_ |_w~~ pCp{_xw_w~ ~pCp{_ps_ w~s~pCp{_ps _w~a~pCp {_xw_w~@ ~pCp{_|y_w ~@~pCp{_~_ w~a~pCp{_ __w~q~p Cp{_o_w~} ~pCp{_w_ w~}~pCp{_{_ _w~}~pCp {oo~w~~~ pCp{ow~w~ ~~pCp{o{~ w~~~pCp{o }~w__}pCp {o_~CpA~w__ }pCp{woO~A|} w__}pCp{w}~ _p}w__~w|}pCp{ w~g}w_o|_~} pCp{w_{Mwo o|_~{pCp{{gq woo`yCCO{pCp{{ {Oz}_xwo}sygsO{pCp {{}{_~Ofwo}sys O{pCp{{~{gOo}w w}sy{_OwpCp{_ww {oO}ww~syOOwpCp{ _yw|oO}ww~`yOgOw pCp{o~ooO}ww ~syCCOwpCp{o_ooO} w{~s|^~pCp{o oooO}w{_Os|^~pCp {ww_Og}w}__x~w} |pCp{w{__Opw }_}pCp{{o{O w}o}pCp{{ w{_~w~o{p Cp{}{w|w~sG o{pCp{}}wy wwOgowpCp{~ _~osww_wwpCp {_o_gw{_~wo pCp{_]gw{ _~wopCp{o~~g w}O~{_pCp{} _}Opw~G{~pCp {}g}w~C_{ ~pCp{~{{ w_s{}pCp{_} wwoo}opCp{ o~woO}o pCp{o~wwO w}_pCp{w} w{Go~~pCp{{ {w_c_~}pCp {}ww_~ }pCp{~ow o~{pCp{w_ wwwwpCp{ {~w{wo pCp{}}w} w_pCp{_~O w~{{pCp{o ~w_{wpCp {w}wo{o pCp{{_sw |}_~pCp{oo w_}}pCp{ s{_wo}{p Cp{}wws }~wpCp{_~O w}~}pCpo} |w~w~spCp _~sw{~o pCpcxw |__~pCp|g O_o}pCp po_|s__~pCp C_xG_ qpCpAsG yoOpCpO~@Lp O~}CpCp G~p pCp xs`pCp CL@_|pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp p Cp pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp p Cp pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pCp  pCp pCp pCp  pCp pCp pCp pC@ %%%%%%%%%%%%%%%%%%%%%%%% End /document/6-5b.bmp %%%%%%%%%%%%%%%%%%%%%%%