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Abstract:
It was shown in 1 that the homogeneous differential equation

1  xNyN  AN1xN1yN1  AN2xN2yN2   A1xy  A0y  0     1
has a finite polynomial solution if and only if

r  0  r  N,n  0  nmodN  r     2
where n is a root of the recurrence relation.

In this paper, the case in which the equation has a forcing term on the right hand side is considered. This
forcing term is selected in such a manner that, given appropriate initial conditions, a particular solution will
result that matches a finite portion of the infinite series homogenous solution, and at the same time,
annihilates this infinite series homogeneous solution. The result of these initial conditions and this right hand
side is a solution that is a polynomial.

The results obtained apply to the classical equations of Hermite, Legendre, and Chebyshev with
appropriate forcing terms and initial conditions.

Introduction:
Consider the initial value problem:

  ANxNyN  AN1xN1yN1  AN2xN2yN2   A1xy  A0y  Rx
y0  B0

y0  B1

y0  B2



yN10  BN1

    3

where   0.
The goal is to select an appropriate Rx and initial conditions such that the solution of this initial

value problem is a polynomial. The recurrence relation of the homogeneous equation is first determined.
Letting

y 
k0



akxk

leads to the recurrence relation
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Let the auxiliary equation be defined as:

A0 
j1

N

Aj
l0

j1

k  l  0     5

Since 5 does not depend upon , condition 2 also holds for 3. The existence of integers
ki  ni  0, 0  i  N that satisfy conditions 2 and 5 will ensure that the general homogeneous solution
of 3 is a polynomial. However, for the vast majority of equations, the existence of such integers is most
unlikely. We now deal with what can be done if we require that 3 only has a polynomial solution. It will
turn out that it is possible to find functions Rx and initial conditions that guarantee that 3 only has
polynomial solutions.

Derivation of Results:
Let’s examine the negation of 2.

r  0  r  N,n  0,nmodN  r     6
where n is a solution to 5.

The result of this statement is that there exists an infinite series homogenous solution that does not
truncate into a polynomial. Fortunately, though, this solution depends entirely on the initial condition
yr0  br. Now suppose one chooses some integerM greater than or equal to zero such thatMmodN  r.
Set Rx  xM in 3. The use of this Rx is justified by the following.

Suppose one wishes to make a particular solution to 3 equivalent to a finite portion (i.e., a polynomial
of order M) of one of the infinite homogenous solutions.

Let
Px  aMxM  aMNxMN  aM2NxM2N   arxr

and substitute this expression into the original differential equation and solve for Rx. Obviously, selecting
this Rx will result in the desired particular solution. Now performing this substitution leads to

A0y  A0aMxM  aMNxMN  aM2NxM2N   arxr 

A1xy  A1aMMxM  aMNM  NxMN  aM2NM  2NxM2N   arrxr 

A2x2y  A2aMMM  1xM  aMNM  NM  N  1xMN   arrr  1xr 



Arxryr  AraMMM  1M  rxM   arrr  10xr 



ANxNyN  ANaMMM  1M  N  1xM   arrr  10r  N  1xr 

yN  aMMM  1M  N  1xMN   arrr  10r  N  10
Clearly, the sum of the above lines must equal Rx. Collecting like terms yields

aMxMA0  A1M  A2MM  1   ANMM  1M  N  1

xMNaMMM  1M  N  1  aMNA0  A1M  N   ANM  NM  N  1M  2N  1

xM2NaMNM  NM  2N  1  aM2NA0  A1M  2N   ANM  2NM  2N  1M  3N  1



xrarNr  Nr  1  arA0  A1r  A2rr  1   Arr!
The sum of these lines is also Rx. Here comes the important observation. The recurrence relation 4 is

equivalent to:
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akNk  nk  1  akA0  A1k  A2kk  1 ANkk  1k  N  1  0
This implies that all of the lines except for the one representing xM are equal to zero. Thus,

Rx  aMA0  A1M  A2MM  1 ANMM  1M  N  1xM

Choosing a different coefficient before xM will only effect the choice of the initial condition yr0  br
that will eliminate the undesired homogeneous solution. The important result is that Rx only depends on
xM. For the sake of simplicity, choose the coefficient to be 1. Thus, Rx  xM.

The next step is to reexamine the homogeneous recurrence relation, but this time, in closed form. Let
k  pN  r for some integer p  0.

ak  apNr  1
pk! 

i0

p1

A0 
j1

N

Aj
l0

j1

k  Ni  1  l br     7

Now set k  M  N where M  qN  r. Because of the Rx term, the recurrence relation must be
changed slightly when calculating aMN. After this is done, set aMN  0 and solve for br:

aMN  aq1Nr  1
q1M  N! i0

q

A0 
j1

N

Aj
l0

j1

M  N  Ni  1  l br  1
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Choosing this initial condition will ensure that the infinite series solution that depends on br will
truncate into a polynomial of order M. This process can be repeated for all values of r for which there exists
no solution n  0 of 5 such that nmodN  r. If there are two or more infinite homogenous solutions, then
Rx would be the sum of the various xM’s by the superposition principle.

Some Examples
Example 1:
Consider the following initial value problem:

2  x3y  5x2y  20xy  60y  Rx
y0  b0

y0  b1

y0  b2

Find an Rx and initial conditions that yield a finite polynomial solution.

Solution:
First, set up and evaluate the auxiliary equation to determine if any of the solutions are finite.

rr  1r  2  5rr  1  20r  60  0, Solution is : r  5,r  4,r  3
The only useful root here is r  5. Since 5mod3  2, it is known that the homogeneous solution that

depends on the initial condition y0  b2 is a polynomial. The other two solutions are not. As a result, a
special Rx must be chosen that will yield only polynomial solutions of the initial value problem. Let’s
examine the solution that depends on y0  b0. Pick a value ofM  0 such thatMmod3  0. One such
value isM  9. Let Rx  x9 for now. Now calculate the initial condition from 8.

The various variables are r  0,  2,A0  60,A1  20,A2  5,A3  1,N  3,M  9,q  3:

b0  2333  0!
i0

3

60  209  3i  59  3i9  3i  1  19  3i9  3i  19  3i  21   2
195
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Now examine the solution that depends on y0  b1. Pick a value ofM  0 such thatMmod3  1.
One such value is M  7. Combining this result with that previously attained, let Rx  x7  x9. Now
calculate the initial condition from 8. The various variables are
r  1,  2,A0  60,A1  20,A2  5,A3  1,N  3,M  7,q  2:

b1  2223  1!
i0

2

60  207  3i  57  3i7  3i  1  17  3i7  3i  17  3i  21  9
440

Now substitute Rx and the initial conditions into the original initial value problem.

2  x3y  5x2y  20xy  60y  x7  x9

y0  2
195

y0  9
440

y0  b2

The solution becomes:

yx   2
195  9

440 x 
1
2 b2x2  2

39 x
3  3

88 x
4  3

8 b2x5  7
390 x

6  1
220 x

7  1
624 x

9

which is a finite polynomial as desired. END
Classical Equations

This technique is also particularly useful in physics and engineering. The well-known equations of
Hermite, Legendre, and Chebyshev are all special cases of 3. In each of these cases, solving the auxiliary
equation yields exactly one positive integer root that matches the parameter that is passed to the respective
equation. This indicates that these equations each have exactly one polynomial solution in the homogenous
case. These polynomials form the set of Hermite, Legendre, and Chebyshev polynomials. However, since
these equations are of order 2, they also yield a second homogenous solution that is not a polynomial. In no
case can they be polynomials since the auxiliary equations do not yield second roots which are integers
greater than or equal to zero, and thus, condition 6 is satisfied. The only exception is the Chebyshev
equation with a parameter of zero. Zero becomes a repeated root, but then, for r  1, there is no root n such
that nmod2  r, and thus, condition 6 is still satisfied.

One is left with the task of generating a polynomial solution which is done as previously shown.
Choose Rx  xM. If the parameter of the equation is even, chooseM to be odd. Similarly, if the parameter
of the equation is odd, choose M to be even. This ensures thatMmod2  kmod2 where k represents the
parameter. Then, selecting an appropriate value of yMmod 20  bMmod 2 will ensure a polynomial solution.
Now, let’s consider an illustrative example:

Example 2:
Suppose a physicist conducts an experiment where a particle’s position can be determined by

Legendre’s equation with a parameter of 3:

1  t2 d2x
dt2
 2t dxdt  12x  Rt

x0  x0

x0  v0

The physicist has an apparatus that will act on the particle with a force equivalent to the time raised to
some positive integer power. Supposing that the physicist wants to restrict the particle’s motion to a fifth
degree polynomial, what setting should s/he choose for the forcing apparatus? In addition, what initial
position and velocity should s/he choose?

Solution:
Substituting into the auxiliary equation,

 rr  1  2r  12  0, Solution is : r  4,r  3
Clearly, the only useful root is r  3, which matches the parameter passed to the Legendre equation. It

follows that the third order Legendre polynomial 5
2 x

3  3
2 x is one of the homogeneous solutions. As shown

4



previously, the second solution is not a polynomial. In order to meet the physicist’s specifications, the second
solution must be reduced to a fifth degree polynomial. SupposeM  5 is chosen. Unfortunately,
5mod2  3mod2  1, which indicates there is a conflict. M cannot be 6 since the second solution would
become a polynomial of order 6, which would violate the specifications. Thus,M should be set to 4. Let
Rt  t4. Next, the initial condition x0  x0 is chosen according to 8. Here,
r  0,  1,A0  12,A1  2,A2  1,N  2,M  4,q  2:

x0  1222  0!
i0

2

12  24  2i  14  2i4  2i  11   1
24

Substituting the results back into the initial value problem yields:

1  t2 d2x
dt2
 2t dxdt  12x  t4

x0  1
24

x0  v0

which has the solution:
xt   1

24  1
4 t

2  1
8 t

4  1
3 v05t3  3t

To answer the original question, the physicist would choose the setting 4 and select a starting position
equal to 1

24 . The initial velocity would be left as arbitrary. END

Concluding Remarks
The results shown can also be applied to any linear differential equation that has an ordinary point at

x  0. Consider the differential equation
Ly  Rx     9

which is of order N and has N initial conditions. Suppose one solution is gix. Define pix as a polynomial
that contains a portion of the infinite series expansion of gix about x  0 if gix isn’t a polynomial, or 0 if
gix is a polynomial. If we let pix be a particular solution, then we can generate a special Rx by using the
following formula:

Rx 
i1

N

Lpix  LPx

where Px represents the entire particular solution.
Now that the desired particular solution has been obtained, the infinite homogenous solutions must be

eliminated by choosing the initial conditions. From the general theory of linear differential equations, it is
known that the general solution of 9 is:

y  Px 
i0

N

ciyix

where yix are n linearly independent homogenous solutions.
Now consider the vector y which contains y and all its derivatives up to yN1. y 0 represents the

desired initial conditions. Let yi and P be defined in a similar fashion except for the fact that they apply to
the individual homogeneous solutions and the particular solution respectively. If a system of equations is set
up to determine the initial conditions, the result becomes:

y 0  P0 
iK
ciyi0

where the set K contains all values k such that ykx is a polynomial homogeneous solution. Here, the various
ci’s are chosen arbitrarily.

While this method would actually be easier to use on 3, it comes with a major disadvantage. The
method cannot be used unless the homogeneous solutions are known. When using the main technique
outlined in this paper, the only requirement is knowing whether a given homogeneous solution is a
polynomial or not, which can easily be determined by the roots of the auxiliary equation 5.

The use of the technique presented is important to science and engineering since many physical
phenomena can be mathematically described by special cases of 1. In addition, it is particularly useful in

5



the teaching of mathematics. When teaching the method of series solutions, it is often helpful for a student to
see an example in which one of the series solutions truncates to a polynomial solution. If forcing terms are
included, then students must analyze how the method of series solutions applies to nonhomogeneous
differential equations. Furthermore, the technique can be used when it is desired to slow down the growth of
a given solution. For example, a rapidly increasing exponential solution could be reduced to polynomial
growth of some given order. In fact, the uses are endless, with more to come as mathematics and science
continue to develop.

1 “Nth-order differential equations with finite polynomial solutions” by Gabriel B. Costa and Lawrence
E. Levine, Int. J. Math. Educ. Sci. Tech. 29, No 6, 1998 pp.911-914.
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