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Abstract:
It was shown in 1 that the homogeneous differential equation

1  xNyN  AN1xN1yN1  AN2xN2yN2   A1xy  A0y  0     1
has a finite polynomial solution if and only if

r  0  r  N,n  0  nmodN  r     2
where n is a root of the recurrence relation.

In this paper, the case in which the equation has a forcing term on the right hand side is considered. This
forcing term is selected in such a manner that, given appropriate initial conditions, a particular solution will
result that matches a finite portion of the infinite series homogenous solution, and at the same time,
annihilates this infinite series homogeneous solution. The result of these initial conditions and this right hand
side is a solution that is a polynomial.

The results obtained apply to the classical equations of Hermite, Legendre, and Chebyshev with
appropriate forcing terms and initial conditions.

Introduction:
Consider the initial value problem:

  ANxNyN  AN1xN1yN1  AN2xN2yN2   A1xy  A0y  Rx
y0  B0

y0  B1

y0  B2



yN10  BN1

    3

where   0.
The goal is to select an appropriate Rx and initial conditions such that the solution of this initial

value problem is a polynomial. The recurrence relation of the homogeneous equation is first determined.
Letting

y 
k0



akxk

leads to the recurrence relation
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akN  ak 
i1

N
1
k  i A0 

j1

N

Aj
l0

j1

k  l     4

Let the auxiliary equation be defined as:

A0 
j1

N

Aj
l0

j1

k  l  0     5

Since 5 does not depend upon , condition 2 also holds for 3. The existence of integers
ki  ni  0, 0  i  N that satisfy conditions 2 and 5 will ensure that the general homogeneous solution
of 3 is a polynomial. However, for the vast majority of equations, the existence of such integers is most
unlikely. We now deal with what can be done if we require that 3 only has a polynomial solution. It will
turn out that it is possible to find functions Rx and initial conditions that guarantee that 3 only has
polynomial solutions.

Derivation of Results:
Let’s examine the negation of 2.

r  0  r  N,n  0,nmodN  r     6
where n is a solution to 5.

The result of this statement is that there exists an infinite series homogenous solution that does not
truncate into a polynomial. Fortunately, though, this solution depends entirely on the initial condition
yr0  br. Now suppose one chooses some integerM greater than or equal to zero such thatMmodN  r.
Set Rx  xM in 3. The use of this Rx is justified by the following.

Suppose one wishes to make a particular solution to 3 equivalent to a finite portion (i.e., a polynomial
of order M) of one of the infinite homogenous solutions.

Let
Px  aMxM  aMNxMN  aM2NxM2N   arxr

and substitute this expression into the original differential equation and solve for Rx. Obviously, selecting
this Rx will result in the desired particular solution. Now performing this substitution leads to

A0y  A0aMxM  aMNxMN  aM2NxM2N   arxr 

A1xy  A1aMMxM  aMNM  NxMN  aM2NM  2NxM2N   arrxr 

A2x2y  A2aMMM  1xM  aMNM  NM  N  1xMN   arrr  1xr 



Arxryr  AraMMM  1M  rxM   arrr  10xr 



ANxNyN  ANaMMM  1M  N  1xM   arrr  10r  N  1xr 

yN  aMMM  1M  N  1xMN   arrr  10r  N  10
Clearly, the sum of the above lines must equal Rx. Collecting like terms yields

aMxMA0  A1M  A2MM  1   ANMM  1M  N  1

xMNaMMM  1M  N  1  aMNA0  A1M  N   ANM  NM  N  1M  2N  1

xM2NaMNM  NM  2N  1  aM2NA0  A1M  2N   ANM  2NM  2N  1M  3N  1



xrarNr  Nr  1  arA0  A1r  A2rr  1   Arr!
The sum of these lines is also Rx. Here comes the important observation. The recurrence relation 4 is

equivalent to:
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akNk  nk  1  akA0  A1k  A2kk  1 ANkk  1k  N  1  0
This implies that all of the lines except for the one representing xM are equal to zero. Thus,

Rx  aMA0  A1M  A2MM  1 ANMM  1M  N  1xM

Choosing a different coefficient before xM will only effect the choice of the initial condition yr0  br
that will eliminate the undesired homogeneous solution. The important result is that Rx only depends on
xM. For the sake of simplicity, choose the coefficient to be 1. Thus, Rx  xM.

The next step is to reexamine the homogeneous recurrence relation, but this time, in closed form. Let
k  pN  r for some integer p  0.

ak  apNr  1
pk! 

i0

p1

A0 
j1

N

Aj
l0

j1

k  Ni  1  l br     7

Now set k  M  N where M  qN  r. Because of the Rx term, the recurrence relation must be
changed slightly when calculating aMN. After this is done, set aMN  0 and solve for br:

aMN  aq1Nr  1
q1M  N! i0

q

A0 
j1

N

Aj
l0

j1

M  N  Ni  1  l br  1
 
m1

N
1

M  m

aMN  1
q1M  N! i0

q

A0 
j1

N

Aj
l0

j1

M  iN  l br  1
M  NM  N  1M  1  0

br  qqN  r!
i0

q

A0 
j1

N

Aj
l0

j1

M  iN  l
1

    8

Choosing this initial condition will ensure that the infinite series solution that depends on br will
truncate into a polynomial of order M. This process can be repeated for all values of r for which there exists
no solution n  0 of 5 such that nmodN  r. If there are two or more infinite homogenous solutions, then
Rx would be the sum of the various xM’s by the superposition principle.

Some Examples
Example 1:
Consider the following initial value problem:

2  x3y  5x2y  20xy  60y  Rx
y0  b0

y0  b1

y0  b2

Find an Rx and initial conditions that yield a finite polynomial solution.

Solution:
First, set up and evaluate the auxiliary equation to determine if any of the solutions are finite.

rr  1r  2  5rr  1  20r  60  0, Solution is : r  5,r  4,r  3
The only useful root here is r  5. Since 5mod3  2, it is known that the homogeneous solution that

depends on the initial condition y0  b2 is a polynomial. The other two solutions are not. As a result, a
special Rx must be chosen that will yield only polynomial solutions of the initial value problem. Let’s
examine the solution that depends on y0  b0. Pick a value ofM  0 such thatMmod3  0. One such
value isM  9. Let Rx  x9 for now. Now calculate the initial condition from 8.

The various variables are r  0,  2,A0  60,A1  20,A2  5,A3  1,N  3,M  9,q  3:

b0  2333  0!
i0

3

60  209  3i  59  3i9  3i  1  19  3i9  3i  19  3i  21   2
195

3



Now examine the solution that depends on y0  b1. Pick a value ofM  0 such thatMmod3  1.
One such value is M  7. Combining this result with that previously attained, let Rx  x7  x9. Now
calculate the initial condition from 8. The various variables are
r  1,  2,A0  60,A1  20,A2  5,A3  1,N  3,M  7,q  2:

b1  2223  1!
i0

2

60  207  3i  57  3i7  3i  1  17  3i7  3i  17  3i  21  9
440

Now substitute Rx and the initial conditions into the original initial value problem.

2  x3y  5x2y  20xy  60y  x7  x9

y0  2
195

y0  9
440

y0  b2

The solution becomes:

yx   2
195  9

440 x 
1
2 b2x2  2

39 x
3  3

88 x
4  3

8 b2x5  7
390 x

6  1
220 x

7  1
624 x
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which is a finite polynomial as desired. END
Classical Equations

This technique is also particularly useful in physics and engineering. The well-known equations of
Hermite, Legendre, and Chebyshev are all special cases of 3. In each of these cases, solving the auxiliary
equation yields exactly one positive integer root that matches the parameter that is passed to the respective
equation. This indicates that these equations each have exactly one polynomial solution in the homogenous
case. These polynomials form the set of Hermite, Legendre, and Chebyshev polynomials. However, since
these equations are of order 2, they also yield a second homogenous solution that is not a polynomial. In no
case can they be polynomials since the auxiliary equations do not yield second roots which are integers
greater than or equal to zero, and thus, condition 6 is satisfied. The only exception is the Chebyshev
equation with a parameter of zero. Zero becomes a repeated root, but then, for r  1, there is no root n such
that nmod2  r, and thus, condition 6 is still satisfied.

One is left with the task of generating a polynomial solution which is done as previously shown.
Choose Rx  xM. If the parameter of the equation is even, chooseM to be odd. Similarly, if the parameter
of the equation is odd, choose M to be even. This ensures thatMmod2  kmod2 where k represents the
parameter. Then, selecting an appropriate value of yMmod 20  bMmod 2 will ensure a polynomial solution.
Now, let’s consider an illustrative example:

Example 2:
Suppose a physicist conducts an experiment where a particle’s position can be determined by

Legendre’s equation with a parameter of 3:

1  t2 d2x
dt2
 2t dxdt  12x  Rt

x0  x0

x0  v0

The physicist has an apparatus that will act on the particle with a force equivalent to the time raised to
some positive integer power. Supposing that the physicist wants to restrict the particle’s motion to a fifth
degree polynomial, what setting should s/he choose for the forcing apparatus? In addition, what initial
position and velocity should s/he choose?

Solution:
Substituting into the auxiliary equation,

 rr  1  2r  12  0, Solution is : r  4,r  3
Clearly, the only useful root is r  3, which matches the parameter passed to the Legendre equation. It

follows that the third order Legendre polynomial 5
2 x

3  3
2 x is one of the homogeneous solutions. As shown
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previously, the second solution is not a polynomial. In order to meet the physicist’s specifications, the second
solution must be reduced to a fifth degree polynomial. SupposeM  5 is chosen. Unfortunately,
5mod2  3mod2  1, which indicates there is a conflict. M cannot be 6 since the second solution would
become a polynomial of order 6, which would violate the specifications. Thus,M should be set to 4. Let
Rt  t4. Next, the initial condition x0  x0 is chosen according to 8. Here,
r  0,  1,A0  12,A1  2,A2  1,N  2,M  4,q  2:

x0  1222  0!
i0

2

12  24  2i  14  2i4  2i  11   1
24

Substituting the results back into the initial value problem yields:

1  t2 d2x
dt2
 2t dxdt  12x  t4

x0  1
24

x0  v0

which has the solution:
xt   1

24  1
4 t

2  1
8 t

4  1
3 v05t3  3t

To answer the original question, the physicist would choose the setting 4 and select a starting position
equal to 1

24 . The initial velocity would be left as arbitrary. END

Concluding Remarks
The results shown can also be applied to any linear differential equation that has an ordinary point at

x  0. Consider the differential equation
Ly  Rx     9

which is of order N and has N initial conditions. Suppose one solution is gix. Define pix as a polynomial
that contains a portion of the infinite series expansion of gix about x  0 if gix isn’t a polynomial, or 0 if
gix is a polynomial. If we let pix be a particular solution, then we can generate a special Rx by using the
following formula:

Rx 
i1

N

Lpix  LPx

where Px represents the entire particular solution.
Now that the desired particular solution has been obtained, the infinite homogenous solutions must be

eliminated by choosing the initial conditions. From the general theory of linear differential equations, it is
known that the general solution of 9 is:

y  Px 
i0

N

ciyix

where yix are n linearly independent homogenous solutions.
Now consider the vector y which contains y and all its derivatives up to yN1. y 0 represents the

desired initial conditions. Let yi and P be defined in a similar fashion except for the fact that they apply to
the individual homogeneous solutions and the particular solution respectively. If a system of equations is set
up to determine the initial conditions, the result becomes:

y 0  P0 
iK
ciyi0

where the set K contains all values k such that ykx is a polynomial homogeneous solution. Here, the various
ci’s are chosen arbitrarily.

While this method would actually be easier to use on 3, it comes with a major disadvantage. The
method cannot be used unless the homogeneous solutions are known. When using the main technique
outlined in this paper, the only requirement is knowing whether a given homogeneous solution is a
polynomial or not, which can easily be determined by the roots of the auxiliary equation 5.

The use of the technique presented is important to science and engineering since many physical
phenomena can be mathematically described by special cases of 1. In addition, it is particularly useful in
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the teaching of mathematics. When teaching the method of series solutions, it is often helpful for a student to
see an example in which one of the series solutions truncates to a polynomial solution. If forcing terms are
included, then students must analyze how the method of series solutions applies to nonhomogeneous
differential equations. Furthermore, the technique can be used when it is desired to slow down the growth of
a given solution. For example, a rapidly increasing exponential solution could be reduced to polynomial
growth of some given order. In fact, the uses are endless, with more to come as mathematics and science
continue to develop.

1 “Nth-order differential equations with finite polynomial solutions” by Gabriel B. Costa and Lawrence
E. Levine, Int. J. Math. Educ. Sci. Tech. 29, No 6, 1998 pp.911-914.
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