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Abstract

It can be shown that if a differential equation is analytic near a point, then
it is always possible to select a forcing term along with initial conditions that
will ensure the solution to the new nonhomogeneous equation is a polyno-
mial that is the finite, truncated portion of the (infinite) series solution of
the original equation. It turns out that this result can be extended to expan-
sions about a singular point. The conditions under which such a polynomial
truncation can be accomplished about a singular point are presented in the
appendix. A brief algorithm is described that enables one to choose the
appropriate forcing term and initial conditions. Following this, an example
involving Laguerre’s Equation is presented.

Introduction

It is often of interest to mathematicians to take the solution of a differential
equation about a point and truncate its series expansion into a polynomial
by means of transforming the original equation into something that is sim-
ilar, but nonhomogeneous. Consider the basic nth order linear differential
equation:

L[y] = 0 (1)
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For the sake of simplicity, assume that a polynomial solution to L[y] = R(x) is
desired near the point x = 0. (The analysis is extremely similar at any other
point.) Suppose that yi(x) is a solution of (1). Let y♦i (x) be a polynomial
truncation of yi(x), if one exists. We make this truncation the particular
solution by selecting the forcing term:

R(x) = L[y♦i (x)] (2)

Then we select initial conditions that will set the arbitrary constant in front of
yi(x) to zero. This can be repeated for every non-polynomial solution of (1).
By superposition, the final forcing term is simply the sum of the respective
forcing terms derived for each non-polynomial solution. This process will be
analyzed more carefully in the following section.

Forcing Terms and Initial Conditions

Once again, consider the linear nth order differential equation L[y] = 0 at
x = 0. Let Y = {yi(x)} be the set of n linearly independent solutions of
this equation. Let P ⊆ Y be the set of polynomial solutions of the equation.
Let P∗ = Y\P , i.e. the set of all non-polynomial solutions of the equation.
With these conventions in mind, the following is a general method that can
be used to create a polynomial truncation solution of this equation. First,
∀y(x) ∈ P∗, select a y♦i (x), provided that one exists. If one doesn’t exist,
then it is useless trying to find a polynomial solution. The best one can do
is simply eliminate that solution and have no polynomial representation of
it. If despite this setback, a polynomial solution is still desired, then choose
y♦i (x) = 0. Next, construct the particular solution p(x). Choose it as follows:

p(x) =
∑
i∈P∗

y♦i (x) (3)

Then the forcing term
R(x) = L [p(x)] (4)

can be selected. The next step is to eliminate the non-polynomial homoge-
neous solutions. This is done by selecting the ith initial condition as

y(i)(0) =
∑

k∈P

(
cky

(i)
k (0)

)
+ p(i)(0) (5)
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where the ck’s are arbitrary constants and 0 ≤ i < n. This selection ensures
that the arbitrary constants before the non-polynomial homogeneous solution
are all zero. Thus the complete solution becomes a polynomial, and we no
longer need worry about any of the homogeneous solutions not being well-
defined at x = 0.

Laguerre’s Equation

We now demonstrate the technique illustrated in the paper by working through
an example involving Laguerre’s Equation, which is

xy′′ + (1− x)y′ + λy = 0 (6)

where λ is a nonnegative integer. We will find a forcing term and initial
conditions to ensure that its solution is a polynomial. It is well known that
one solution of Laguerre’s Equation is

y1(x) = Lλ(x), (7)

which is known as the Laguerre polynomial of order λ. Since x = 0 is a
regular singular point, we may use the Method of Frobenius to show that the
second linearly independent solution takes the form:

y2(x) = Lλ(x) ln(x) +
∞∑

n=1

bnxn (8)

where the bn’s are coefficients that must be determined.1

Fortunately, for the remainder of the analysis, the exact values of the bn’s
will not be important. It is evident from (7) and (8) that P = {y1(x)} and
P∗ = {y2(x)}. The next step is to find a polynomial truncation of y2(x).
The term with the logarithm cannot have a polynomial truncation. (See the
end of the Appendix for more about this.) The reason for this is outlined in
the appendix. Thus, the following particular solution should be selected:

p(x) = y♦2 (x) =
n∑

k=1

bkx
k (9)

1For a more detailed discussion of the solution to Laguerre’s Equation, consult any gen-
eral differential equations text. One example is Rainville, Earl D. Elementary Differential
Equations, 8th Edition. Prentice Hall, 1996. ISBN: 0135080118.
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The next step is to determine the forcing term R(x). By examining (6)
and (9), one sees that R(x) = L[p(x)] is analytic. Therefore we rewrite the
nonhomogeneous equation as follows:

xy′′ + (1− x)y′ + λy =
∞∑

k=0

rkx
k (10)

For the sake of simplicity, rewrite p(x) as:

p(x) =
∞∑

k=0

akx
k (11)

where a0 = 0, ai = bi if 0 < i ≤ n, and ai = 0 if i > n. Now substitute
this expression for y in (10). After some algebra the following equation is
obtained:

a1 + a0λ− r0 +
∞∑

k=1

[(
ak+1(k + 1)2 + ak(λ− k)− rk

)
xk

]
= 0 (12)

The values of the ak’s are known. They will be used to solve for the rk’s.
Starting with the constant term outside of the summation, it is clear that

r0 = b1 (13)

since a0 = 0 and a1 = b1. When 0 < i < n, ai = bi and ai+1 = bi+1. Thus,

ri = bi+1(i + 1)2 + bi(λ− i) if 0 < i < n (14)

When i = n, an = bn but an+1 = 0. This implies that

rn = bn(λ− n) (15)

Finally, if i > n, then an = an+1 = 0. Thus,

ri = 0 if i > n (16)

(13)-(16) give the values of the coefficients of the polynomial that make up
the forcing term R(x). All that is left to do is calculate the initial conditions.
Applying equation (5) to this problem yields:

y(0) = c1Lλ(0)
y′(0) = c1L

′
λ(0) + b1

(17)
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It may also be of interest to choose these initial conditions in a slightly
different form. Let A be an arbitrary constant and set it equal to c1Lλ(0).
Also, use the substitution b1 = 1 + 2λ as shown in (20). This yields:

y(0) = A

y′(0) = A
L′λ(0)

Lλ(0)
+ 2λ + 1

(18)

This choice of initial conditions emphasizes the fact the y(0) can be chosen
completely arbitrarily for a polynomial truncation solution to result.

Conclusion

The results that have been presented establish the conditions that are re-
quired in order to construct a nonhomogeneous differential equation with a
solution that is a polynomial truncation of any homogeneous linear differen-
tial equation, regardless of whether the desired solution is considered about
an ordinary or singular point. Then, a method of actually constructing these
equations and solutions was presented and demonstrated. This work is a
continuation of research concerning the existence of polynomial solutions of
differential equations. In [1] a thorough analysis of polynomial solutions
of analytic equations was presented. In [2], using a technique similar to
those employed in [1] and this paper, complete polynomial solutions of the
well-known equations of Hermite, Legendre, and Chebyshev in their nonho-
mogeneous forms were derived. This paper concludes work done on ordinary
linear differential equations. Future research will transcend the realm of lin-
earity. Applications to partial differential equations will also be considered.
Hopefully, more generalizations will be discovered, which will increase our
awareness of the nature of polynomials with respect to differential equations.

Appendix

A fundamental question in this analysis is whether f♦(x), a polynomial
truncation of some function f(x), exists. As a side note, f♦(x) is rarely
unique for a given f(x). If f(x) is analytic at x = 0, then the problem is

5



trivial. Since f(x) is analytic, it can be rewritten as:

f(x) = a0 + a1x + a2x
2 + · · · =

∞∑
i=0

aix
i (19)

We can simply choose an f♦(x) as follows:

f♦(x) = a0 + a1x + a2x
2 + · · ·+ anxn (20)

where n ∈ N. When f(x) fails to be analytic, the problem is trickier. To
analyze this situation we must split up f(x) into analytic and non-analytic
components, i.e.

f(x) = a(x) + b(x) (21)

where a(x) is analytic and b(x) is not analytic. If a(x) 6= 0, then it is possible
to select f♦(x) = a♦(x) where a♦(x) is selected as shown in (20). The
question that remains is how one goes about finding the analytic component
of a function. One way is to consider the series expansion of f(x) as a
continuous, as opposed to discrete, entity. We must determine the spectrum
of powers of x contained in f(x) by using an integral transform, which is
actually the Fourier Transform in disguise.

Theorem: Let f(x) be a function. The spectrum of powers of x is given by
the expression

p(n) =
1

2π

∫ ∞

−∞
f

(
eix

)
e−inxdx =

1

2π
F [

f
(
eix

)]
(22)

provided that the integral exists.

Proof. Consider a function that has a Laurent expansion. That is, it takes
the form:

f(z) =
∞∑

n=−∞
P (n)zn (23)

We want a summation that includes all real values of n to take care of the
case where f(x) does not have a Laurent expansion. After applying a limiting
process and introducing a differential, the summation becomes the following
integral:

f(z) =

∫ ∞

−∞
p(n)zndn (24)
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Using the substitution z = eix, we see that (24) is really an inverse Fourier
Transform. Hence,

f
(
eix

)
=

∫ ∞

−∞
p(n)einxdn = 2πF−1 [p(n)] (25)

Taking Fourier Transforms of both sides and dividing by 2π yields

p(n) =
1

2π
F [

f
(
eix

)]
(26)

establishing the result. ¤

Using this information, we can now show how to find the functions a(x)
and b(x). Suppose the spectrum function p(n) takes the form:

p(n) =
∑

k∈K
(akδ(n− k)) + r(n) (27)

where δ(n) is the Dirac Delta Function, K is the set of all real numbers which
correspond to nonzero values of ak and r(n) represents the remainder after
the delta functions have been eliminated. Then we define a(x) and b(x) to
be:

a(x) =
∑

k∈K∩N
akx

k (28)

and

b(x) =
∑

k∈K\N
akx

k +

∫ ∞

−∞
r(n)xndn (29)

where K\N refers to the set of all elements of K that are not natural numbers.
In essence, for a polynomial truncation to exist, the spectrum of powers of
x must have at least one “spike” at a nonnegative integer. If there is no
spike at any nonnegative integer power n of x, then there is no justification
for including an xn term in the polynomial solution. Although it is possible
to make any polynomial the solution of a differential equation, we need this
polynomial to be a polynomial truncation of the function so that the poly-
nomial solution of the differential equation has some of the properties of the
homogeneous non-polynomial solution.

In the main text, it was mentioned without explanation that the function
ln(x) does not have a polynomial truncation. To show this fact, consider
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the power series spectrum of ln(x) about zero.

p(n) =
1

2π
F [ln(exp(ix))] =

i

2π
F [x] = − d

dn
δ(n) (30)

There is a derivative of the delta function at zero but no pure delta functions
at any nonnegative integers. Thus the ln(x) term has no analytic component
that can contribute to y♦2 (x). Also, multiplying ln(x) by any of the terms of
Lλ(x) will only horizontally shift the spectrum function p(n). As a result,
we can only have the polynomial truncation shown in (9).
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