
Quantifying Architectural Debts

Lu Xiao
Drexel University

Philadelphia,United States
lx52@drexel.edu

ABSTRACT
In our prior research, we found that problematic architec-
tural connections can propagate errors. We also found that
among multiple files, the architectural connections that vi-
olate common design principles strongly correlate with the
error-proneness of files. The flawed architectural connec-
tions, if not fixed properly and timely, can become debts
that accumulate high interest in terms of maintenance costs
over time. In this paper, we define architectural debts as
clusters of files with problematic architectural connections
among them, and their connections incur high maintenance
costs over time. Our goal is to 1) precisely identify which and
how many files are involved in architectural debts; 2) quan-
tify the penalties of architectural debts in terms of mainte-
nance costs; and 3) model the growth trend of penalties—
maintenance costs—that accumulate due to architectural
debts. We plan to provide a quantitative model for project
managers and stakeholders as a reference in making deci-
sions of whether, when and where to invest in refactoring.

Categories and Subject Descriptors
D.2.9 [Software engineering]: Management

Keywords
software quality, maintenance costs, software architecture,
refactoring, architectural debt

1. PROBLEM STATEMENT AND MOTIVA-
TION

Technical debt, proposed by Cunningham in 1992, is a
metaphor used to describe the consequences of near-sighted
coding activities. The definition of technical debt has been
refined and expanded to describe various kinds of problems
,caused by sacrificing long-term goals for short-term bene-
fits, in software development. In recent years, researchers
gather together in technical debt workshops to discuss what
is the definition of technical debt and how to manage it [8].

However, many questions remain open: how to identify tech-
nical debt? how to quantify penalties of technical debt? how
to monitor the variation of technical debts over time?

Researchers in the bug prediction field found that buggy
files in the past are likely to be buggy in the future [7, 4, 12].
The implication is that bugs in these files were not fixed com-
pletely. In our recent work [16], we found error-prone files
are usually architecturally connected in groups instead of be-
ing isolated from each other. We observed that architectural
connections among these files can propagate errors among
them, making errors hard to remove and causing mainte-
nance costs to accumulate. In our another recent work [10],
we reported that architecture connections among files that
violate common design principles contribute to the error-
proneness of files. Based on our prior results, we consider
clusters of files with problematic architecture design that in-
curs high maintenance costs (in terms of high change- and
error-rates) over time as architectural debts. These debts,
if not paid off in time, will influence more files through error-
propagation and keep incurring high maintenance costs.

Our research goal is threefold: first, we aim to automat-
ically and precisely identify architectural debts—which and
how many files are involved in each debt; second, we will
find reliable proxies to quantify the penalties—in terms of
maintenance costs—of architectural debts; finally, we plan
to model the evolution trend of architectural debts so that
their variation can be monitored: how the impact scope of
architectural debts varies and how the debt penalties accu-
mulate in a project over time. This model can be used to
evaluate the amount of maintenance costs already incurred
by the debts and estimate how much more effort is required
in the future if the debts are not paid off. Stakeholders can
consult this model to support their decisions of whether,
when and where to make a refactoring investment in a soft-
ware project.

The rest of this paper is organized as follows. Section 2
discusses related work and background. Section 3 outlines
our approach. Section 4 introduces the results we acquired
so far. Section 5 discusses our evaluation plan. The last
section concludes this paper.

2. BACKGROUND AND RELATED WORK
Our work is related to considerable prior research.
Bug Prediction. In the life cycle of a software project,

considerable amount of effort goes into testing and debug-
ging activities. To save time and labor in such activities,
researchers in bug prediction field use past information from
software repositories to predict the location of bugs in the fu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803194

1030

ture [4] [11] [13]. The goal of bug prediction is to effectively
locate bugs in advance to prioritize testing and debugging
tasks. However, the predictive power of past bug informa-
tion implies that the errors are not entirely removed, other-
wise, history would not be a good predictor for the future.
Little work has been done to explore the architecture connec-
tions among files that contribute to the error-proneness of a
project. Also, not enough work has been done to investigate
how to fundamentally reduce the overall error-proneness of
a project through architecture improvement.

Architecture Views. Due to the absence of up-to-date
and accurate documentation to record the architecture of
software systems, researchers proposed different approaches
to reverse-engineering the architecture of a project from its
source code. Mancoridis [9] proposed the Bunch clustering
algorithm, Tzerpos [15] designed the ACDC clustering al-
gorithm and Bavota [3] proposed the LDA view. Different
views were used to help developers understand the archi-
tecture of a software system and to support the analysis
of software architecture. However, there remains a gap be-
tween software architecture and quality (in terms of error-
proneness). That is, the impact of architecture design on the
quality of a software project has not been fully explored.

Technical Debt. Technical debt (TD) describes the con-
sequences of near-sighted coding activities since Ward Cun-
ningham coined the metaphor back in 1992. People refine
and expand its definition to describe various kinds of prob-
lems, caused by sacrificing long-term goals for short-term
benefits, in software development [8]. Researchers suggest
various heuristics to approximate TD using code anomalies
such as code clones, long methods, and god classes. The
problem is that code anomalies do not necessarily lead to
high maintenance costs. Zazworka et al., [17] compared four
TD identification techniques—modularity violations, grime
build up, code smells, and automatic static analysis (ASA)—
in terms of the correlation between detected TD and main-
tenance effort. They found only a subset of TD detected by
each technique over-lapped with highly error-/change-prone
files. In this paper, we define the concept of architectural
debts. It refer to clusters of files with high maintenance
costs that are incurred by architecture design flaws among
them. We also attempt to automatically and precisely iden-
tify the scope (in terms of which and how many files are
involved), quantify the penalties, and model the evolution
trend of such debts.

Architecture Root Detection. In our recent work [16],
we proposed a novel architecture model—Design Rule Space
(DRSpace)—to bridge the gap between software architec-
ture and maintenance effort. The DRSpace model is especial
in three aspects: 1) it models software architecture as mul-
tiple overlapping design spaces; 2) it distinguishes different
roles of files in a project as design rules and modules based on
the design rule theory proposed by Baldwin and Clark [2];
and 3) it presents structural and evolutionary dependen-
cies among files simultaneously. Using the new architecture
model—DRSpace, we designed an architecture root detec-
tion algorithm that calculates a minimal set of DRSpaces
that aggregate the error-prone files. We claimed that the
minimal set of DRSpaces are the architecture roots of error-
proneness. In evaluating a single version of three open source
projects: Hadoop, JBoss and Eclipse JDT, we found that
the majority of the error-prone files in these projects are
architecturally connected in only a few architecture roots.

In addition to that, we observed various architecture issues,
such as circular dependencies, unstable interfaces, unhealthy
inheritance and modularity dependencies [10] in the roots.
These architectural issues usually co-locate with files of high
maintenance costs, suggesting a strong correlation between
architecture issues and high maintenance costs in a software
project.

3. APPROACH AND SOLUTION
In this section, we define the concept of architectural

debts and outline our approach of identifying architectural
debts, quantifying their penalties, and modeling their evo-
lution/growth trends.

3.1 Architectural Debt Definition
We define architectural debts as clusters of files with

architectural design problems that incur high maintenance
costs over time. A cluster of files that satisfies the following
conditions is an architectural debt.

First, the cluster of files contains problematic architec-
tural connections among them. In prior work, we observed
that architecture design flaws propagate errors among files
and cause high change- and error-rates of multiple files.
Second, the cluster of files are error-prone over time. Not
all files with architecture issues are error-prone and will lead
to maintenance difficulties. Only files that persistently incur
high maintenance costs over time are true debts. Third,
files in the cluster couple with each other in revision history.
The coupling among files indicates changing one file is likely
to trigger changes to other files in the cluster. Files that evo-
lutionarily coupled with each other incur high maintenance
costs as a group rather than as individuals. Each cluster of
file is a unit of architecture debt that merits special attention
or even refactoring.

3.2 Identifying Architecture Debts
The architecture root detection algorithm proposed in our

prior work [16] detects cluster of error-prone files that are
architecturally connected to each other. We observed var-
ious architecture issues in these roots that co-located with
high maintenance files. However, the detected architecture
roots were not necessarily architectural debts. First, not all
files in an architecture root were high-maintenance. Second,
the architecture roots were detected in a single version dur-
ing the revision history of a project; the long-term impact
of architecture roots were not analyzed.

We plan to automatically and precisely identify the scope
of architectural debts, in terms of which and how many files
are involved, as well as how are they involved. We plan 3
steps to identify which and how many files are involved in
architectural debts. First, we analyze the revision history
of a project to identify cluster of files that are coupled with
each other. Then, we identify problematic architectural con-
nections among files in the clusters detected in the first step.
Files involved in architectural issues are retained for further
consideration. Last, we investigate the error-proneness of
these clusters of files in multiple versions. Only clusters of
files that are persistently error-prone in multiple versions
are identified as architecture debts. To identify how files are
involved in architectural debts, we plan to investigate which
lines and methods in these files are touched to fix bugs in
revision history, and investigate their relations. .

1031

3.3 Quantifying Architecture Debt Penalty
After identifying architecture debts, the next step is to

find reliable proxies to quantify the penalties of debts in
terms of the maintenance costs they incur. The quantifica-
tion evaluates the severity of architectural debts. We plan
to quantify architectural debt penalties using maintenance
cost measures mined from software management reposito-
ries, including revision systems and bug tracking databases.
The challenges in quantifying penalties of architectural debts
are from two aspects: 1) the noise in version control and bug
tracking data, as discussed by other researchers [1] [5], it dif-
ficult to accurately locate bug revisions; 2) reliable proxies
to measure maintenance costs are not clear. It is impossi-
ble to directly measure maintenance costs—in terms of the
amount of time or money spent—due to the unavailability
of such data. We plan to approximate debt penalties using
measures mined from revision history, such as 1) the num-
ber of bug issues associated with architectural debts; 2) the
number of bug revisions on the files involved in architec-
tural debts; and 3) the number of code churn of the files
involved in architectural debts. The goal is to evaluate the
consequences of architectural debts quantitatively.

3.4 Modeling the Trend of Architecture Debt
As developers add new features and fix bugs, the architec-

ture of a project evolves during its life cycle. We plan to ex-
plicitly model the evolution trend of architectural debts over
time: how the impact scope of architectural debts enlarges
and how debt penalties accumulate from version to version.
The model describes the relationship between the age and
the scope, as well as the age and the penalties, of architec-
tural debts. The age of an architectural debt is the number
of versions in which it is identified as a debt. The scope of
an architectural debt is the number of files involved in it.
The penalties of a debt are the maintenance costs, quanti-
fied using reliable proxies, incurred by files involved in the
debt. This model reveals how the number of files impacted
by an architectural debt increases from version to version.
This model also evaluates the costs spent on an architectural
debt in the past and predict how many additional penalties
it will accumulate in the future. The goal is to provide quan-
titative reference for stakeholders and project managers in
deciding if it is necessary to refactor the project to reduce
the overall error-proneness fundamentally, as well as in de-
ciding “when” and “where” to perform the refactor.

4. RESULTS ACHIEVED SO FAR
In a case study of an industry project [6], we were able

to detect the architecture debts that, verified by developers,
were the root causes of high maintenance costs. We used
simple economic models to predict additional maintenance
costs required in terms of number of bugs, lines of code in
these roots. Supported by the economic model, we pro-
posed a refactoring plan to the developers team, which was
accepted and planned for implementation. This case study,
however, was based on the source code of a single version of
the project.

We have also collected data from 15 open source project,
each with multiple stable versions selected for analysis. We
are able to locate groups of architecturally connected files
that are persistently change- and error-prone in these projects
during multiple versions. Besides, we have built a simple re-
gression model showing that the number of error-prone files

in these groups increases over time.

5. EVALUATION PLAN
We plan to evaluate our approach using both open source

and industry projects, investigating multiple versions of
each project.

Collecting project data For each project, we will col-
lect structural and historical data. The structural data in-
clude the reverse-engineered architecture of multiple stable
versions. The historical data include the revision logs and
bug tracking data.

Research Questions To evaluate the effectiveness of
our approach, we plan to answer the following three research
questions for each project.

1. RQ1: Are the architectural debts identified by
our approach real problems? This question verifies
if the identified architectural debts are problems that
are worthy attention. If so, we also plan to find out
how early our approach can detect the problem.

2. RQ2: Are the proxies for quantifying archi-
tectural debt penalties reliable? This research
question aims at evaluating whether the quantifica-
tion proxies can reliably and reasonably approximate
the architectural debt penalties, as well as how reliable
they are.

3. RQ3: How effective is the evolution model of
architectural debts? This research question evalu-
ates whether the evolution model can correctly esti-
mate the amount of costs that have been and will be
spent on a debt. We also want to know whether the
model is helpful for managers in making refactoring
decisions and how effective it is.

Evaluation on open source projects The advantage
of studying open source project is the easily availability of
the project data, even the source code, which is usually un-
available if studying an industry project. However, it is rel-
atively hard to verify our results using open source projects,
because direct feedback from developers is usually hard to
acquire. Our plan is to divide the history data into two
parts: “past” and “future”. Thus the “future” can be used as
a retrospect verification source for the “past”. For RQ1, we
will check if a debt identified in the “past” is still a debt in
the“future”, and if the number of files involved in it increases
in the “future” comparing to the “past”. If the answers are
both yes, this debt can be verified as a real problem. For
RQ3, we will verify whether our penalty model built from
“past” data can correctly “predict” the “future” costs of an
architectural debt. In the meanwhile, we will reach out to
the leaders of open source projects to get feedback. RQ2 is
hard to evaluate without feedback from developers.

Evaluation on industry projects We will also seek
corporation with industry partners. The advantage of using
industry data is that we can get verification and feedback
directly from the developer team. We plan to interview the
developers and project managers. For RQ1, we plan to ask
the developers if the identified architectural debts are real
problems. If the answer is positive, we will ask if they are
ware of their existence and when do they know. For RQ2,
we will ask the developers whether the penalty quantification
deviates from their experience in development. For RQ3, we

1032

will ask the project manager if the quantification proxies and
penalty model can help them to make refactoring decisions.
Finally, if a refactor decision is made with the help of our
approach, we will track the updates and evaluate the real
benefit, if any, of the implemented refactoring.

6. CONCLUSION
In this paper, we defined architectural debts as clusters

of files with architectural design problems that incur high
maintenance costs over time. We proposed an approach
to automatically and precisely identify architectural debts,
quantify the penalties, and model their evolution/growth
trend. Our work pushes the concept of technical debt closer
to a practice from a metaphor: first, we defined a special
kind of“debts” ,caused by architecture design problems, that
is automatically detectable; second, our approach makes the
penalties of architectural debts pragmatically measurable
and quantifiable. The ultimate goal of our work is to provide
scientific reference to stakeholders and project managers in
making decisions of whether, when and where to make a
refactoring investment in a project for long-term benefits.
We plan to evaluate the usefulness of our work using both
open source and industry projects.

7. ACKNOWLEDGMENTS
I would like to thank my advisor, Dr. Yuanfang Cai, for

her valuable feedback on this paper.

8. REFERENCES
[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and

Y.-G. Guéhéneuc. Is it a bug or an enhancement?: A
text-based approach to classify change requests. In
Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting
of Minds, CASCON ’08, pages 23:304–23:318, New
York, NY, USA, 2008. ACM.

[2] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:
The Power of Modularity. MIT Press, 2000.

[3] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk,
and A. d. Lucia. Improving software modularization
via automated analysis of latent topics and
dependencies. ACM Trans. Softw. Eng. Methodol.,
23(1):4:1–4:33, Feb. 2014.

[4] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy.
Predicting fault incidence using software change
history. IEEE Transactions on Software Engineering,
26(7):653–661, 2000.

[5] K. Herzig, S. Just, and A. Zeller. It's not a
bug, it's a feature: How misclassification
impacts bug prediction. In Proceedings of the 2013
International Conference on Software Engineering,

ICSE ’13, pages 392–401, Piscataway, NJ, USA, 2013.
IEEE Press.

[6] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao,
S. Haziyevy, V. Fedaky, and A. Shapochkay. A case
study in locating the architectural roots of technical
debt. In Proc. 37th International Conference on
Software Engineering, 2015.

[7] S. Kim, T. Zimmermann, J. Whitehead, and A. Zeller.
Predicting faults from cached history. In Proc. 29st
International Conference on Software Engineering,
pages 489–498, May 2007.

[8] P. Kruchten, R. Nord, and I. Ozkaya. Technical debt:
From metaphor to theory and practice. IEEE
Software, 29(6):18–21, Mar./Apr. 2012.

[9] S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and E. R.
Gansner. Bunch: A clustering tool for the recovery
and maintenance of software system structures. In
Proc. 15th IEEE International Conference on Software
Maintenance, pages 50–59, Aug. 1999.

[10] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot
patterns: The formal definition and automatic
detection of architecture smells. In Proc. 15th Working
IEEE/IFIP International Conference on Software
Architecture, May 2015.

[11] N. Ohlsson and H. Alberg. Predicting fault-prone
software modules in telephone switches. IEEE
Transactions on Software Engineering, 22:886–894,
Dec. 1996.

[12] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where
the bugs are. In Proc. 13thACM SIGSOFT
International Symposium on Software Testing and
Analysis, pages 86–96, July 2004.

[13] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Predicting the location and number of faults in large
software systems. IEEE Transactions on Software
Engineering, 31(4):340–355, 2005.

[14] R. Schwanke, L. Xiao, and Y. Cai. Measuring
architecture quality by structure plus history analysis.
In Proc. 35rd International Conference on Software
Engineering, pages 891–900, May 2013.

[15] V. Tzerpos and R. C. Holt. ACDC: An algorithm for
comprehension-driven clustering. In Proc. 7th Working
Conference on Reverse Engineering, pages 258–267,
Nov. 2000.

[16] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces:
A new form of architecture insight. In Proc. 36th
International Conference on Software Engineering,
2014.

[17] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai,
C. Seaman, and F. Shull. Comparing four approaches
for technical debt identification. Software Quality
Journal, pages 1–24, 2013.

1033

