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Abstract—This case study combines known software structure 
and revision history analysis techniques, in known and new ways, 
to predict bug-related change frequency, and uncover 
architecture-related risks in an agile industrial software 
development project. We applied a suite of structure and history 
measures and statistically analyzed the correlations between 
them. We detected architecture issues by identifying outliers in 
the distributions of measured values and investigating the 
architectural significance of the associated classes. We used a 
clustering method to identify sets of files that often change 
together without being structurally close together, investigating 
whether architecture issues were among the root causes. The 
development team confirmed that the identified clusters reflected 
significant architectural violations, unstable key interfaces, and 
important undocumented assumptions shared between modules. 
The combined structure diagrams and history data justified a 
refactoring proposal that was accepted by the project manager 
and implemented.   

Index Terms—measure, structure, change history, software 
architecture, fault prediction 

I. MOTIVATION AND BACKGROUND 
Software architecture, the “fundamental concepts or 

properties of a system in its environment embodied in its 
elements, relationships, and in the principles of its design and 
evolution” [7], often receives inadequate attention, especially 
in agile software development.  For example, the architecture 
used in a small, agile project may comprise only a few 
principles, kept in the heads of the developers. However, as 
small projects grow up, they tend to postpone both architecture 
specification and necessary restructuring, which then become 
harder and harder as the code base grows, until the as-built 
architecture has degraded so severely that it needs major 
repairs. Sadly, the expense of restructuring is hard to justify — 
until there is a crisis. 

 This problem could be mitigated by explicitly tracking 
“architectural debt” – architecture-related technical debt – so 
that agile projects can decide when to pay some of it off.  
However, architectural debt tends to hurt future project 
sustainability much more than it does current functionality or 
quality. Therefore, even known architectural issues tend to go 
unresolved in the rush to deliver the next demo. When the crisis 
finally happens, the development team needs ways to prioritize 
the backlog of restructuring tasks, selecting which ones to 
include in its architecture renovation plan. 

In this paper, we report a case study of measuring 
architecture quality and identifying architecture issues by 
combining analyses of dependency structure and revision 
history, following Wong, Cai, Kim and Dalton’s [23] work on 
modularity violation detection through structure/history 
contrast analysis. This combined analysis allowed us to detect 
and locate architecture deviation/degradation, discover shared 
but undocumented assumptions that cut across module 
boundaries, correlate structural measures with faults and 
change proneness, and support a restructuring proposal with 
quantitative measurements and compelling diagrams. The 
proposal was approved and implemented, cleaning up a large 
number of the most fault-prone files. 

This case study is part of an exploratory program in 
architecture analysis and improvement techniques. We are 
investigating the use of architecture-related software metrics 
both for (a) predicting the locations and impacts of future bugs, 
and for (b) uncovering and prioritizing current architecture 
risks. (We use bug and fault interchangeably, except as noted.)  
We conjecture that, once uncovered, mitigating a risk will also 
reduce both the metrics that uncovered it and the corresponding 
future bug impacts. If so, it would suggest that the metrics are 
measuring aspects of architecture quality. 

II. RELATED WORK 
In this section, we review the related literature on structure 

measures, history measures, and fault prediction, which form 
the background for this research. For this case study, our focus 
is not on constructing the perfect predictor but on finding the 
most intuitive, easily obtainable measures that perform “well 
enough”. We started with some representative measures, 
chosen for convenience, and explored how to use them to 
analyze software architecture.  Future work will study tradeoffs 
between convenience and usefulness of the measurements. 

Size Measures. Size measures are typically used to measure 
software productivity, predict fault locations for testing, and 
predict maintenance effort. There are two major types of size 
measures: 1) physical source lines of code which describe size 
in terms of the physical length as it appears for people to read 
(such as SLOC, NCLOC and KSLOC) and 2) logical source 
statements, which characterize size in terms of number of 
machine instructions or statements, such as DSI (delivered 
source instructions), or KDSI.   

Park [18] commented that “Nothing in this report should be 
interpreted as implying that we believe one size measure is 
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more useful or more informative than another.” Based on the 
assumption that different size measures are highly correlated to 
each other, and in particular that measures of lines of code  are 
highly correlated with the number of bytes it takes to store  
them in files, we chose file size (in kilobytes, KB) as our size 
measure because it is widely available. 

Complexity Measures. There are two types of complexity 
measures: complexity of individual files, and complexity of 
interconnections between files. McCabe complexity [11] 
directly measures the number of linearly independent paths 
through a program’s source code. Henry and Kafura [6] were 
among the first to measure complexity by the fan-in and fan-
out of cross-references between files.  The widely studied CK 
metric suite proposed by Chidamber and Kemerer (CK) [3] 
identifies six object-oriented metrics. MacCormack, Rusnak, 
and Baldwin [10] measure the complexity (lack of modularity) 
of a system’s dependency graph by its “propagation cost” and 
its “clustered cost”. (“Cost” here refers to “path cost” in routing 
algorithms, not to real-world cost.) 

In our work, we are trying fan-in (the number of modules 
that depend on a given module) and fan-out (the number of 
modules that the given module depends on) to measure the 
complexity of a file’s relationships to other files.  

Change Measures. The main information sources for 
measuring change are a project’s version control system and its 
bug and task tracking system. The version control system 
tracks all the information about what has been changed, when 
and by whom. The bug and task tracking system records the 
tasks carried out by the project team, classified into task types 
such as bug-fix, new feature, or restructuring.  

Mockus, Stephen and Karr [13] measured change by size 
(LOC added/deleted and number of sub systems affected etc.) 
and purpose. In our work, each time a given file is checked in 
to the version control system, we count that as one change to 
the file. We divide the change types into three categories: bug-
fixes, features, and unknown.  

Effort and Impact Measures. Effort in software projects is 
often measured by counting tasks, bug reports, file versions, 
change sets, or staff hours. Although staff hours are the actual 
units of effort in software projects, it is methodologically 
impossible to allocate staff hours accurately to any of the other 
units of impact above, because (a) real developers think about 
multiple files, bugs, and tasks at the same time, (b) a 
developer’s productivity fluctuates widely due to uncontrolled 
variables in her environment, and (c) collecting the data relies 
on the developer’s memory of how she spent her time. In this 
case study, therefore, we treat one change (one file check-in) as 
one unit of impact. Later, we will look into ways of allocating 
staff hours to changes.  

Types of Changes. Many project repositories record links 
between change sets and the tasks for which the changes were 
made, enabling analysis by type of task. However, this kind of 
data often has poor quality [1], because the quality is hard to 
check at time of capture. In our case study, for example, the 
developers were expected, at time of check-in, to link each 
change set to the bug and/or task tickets for which the changes 
were made.  However, the data revealed that some developers 

had provided ticket links most of the time, some provided them 
about half the time, and some rarely provided them at all, such 
that, for about half of the changes, we do not know whether 
they were bug-fixes or not. This did not make the exercise 
invalid, but it highlighted the importance of watching for data 
quality problems and adapting the analysis accordingly. 

Software Fault Prediction from Project Repositories. The 
work of Ostrand, Weyuker and Bell [16] is representative of a 
wealth of research on how to analyze project development 
repositories to predict which files will have faults in the future. 
Their approach identifies a set of software metrics that 
correlate well with future fault detection, builds a prediction 
function out of them, based on negative binomial regression, 
and fits the parameters of the function to historical data of the 
project. They created a practical tool for prioritizing files to 
undergo system tests based on the predicted number of 
remaining bugs. Their tool consistently identifies 20% percent 
of the files that contain 71% to 92% of the remaining faults. 
They analyzed a wide variety of project types, differing in 
programming languages, application domains, and corporate 
divisions, etc. The tool is now in routine use in several ongoing 
development projects at AT&T Research. Other approaches 
use machine learning techniques to create classifiers that 
separate fault-prone files from others. 

Prediction Performance. The usual criteria for comparing 
the performance of prediction methods include correlation, 
accuracy, precision, and recall. Correlation is commonly used 
when comparing predictions of scalar values, whereas 
accuracy, precision, and recall are used to measure the 
performance of classifiers [12] [24] [1] and information 
retrieval methods. In fault prediction work, correlation  is often 
used to compare how well two methods predict the number of 
faults in a file, and accuracy, precision, and recall are used to 
compare how well two methods predict which files contain at 
least one bug, and which do not. 

Ohlsson and Alberg [14] were among the first to use 
variants on the Pareto diagram to compare the performance of 
fault prediction functions, calling theirs the Alberg diagram. 
(The diagram notation dates back at least to 1905, to M. O. 
Lorenz [9].) They also noted that the usual correlation 
functions were not well suited for this comparison.  

Fenton and Ohlsson [4] did an extensive study of faults and 
failures in a large system, reporting quite a few surprising 
observations such as the low correlation between bugs fixed 
before release and failures that happened after release. The 
biggest lesson from this study is that one must explore the data 
at hand with only minimal prior assumptions, before applying 
pre-defined analysis techniques to them. 

Ostrand and Weyuker[17] noted that correlation is not a 
sufficient performance measure because the precise number of 
bugs found in a particular file is not as important as the relative 
number of bugs found in one file vs. another, and total number 
of bugs found in the set of files that one examines first. 
Furthermore, both accuracy and precision statistics treat false 
positives and false negatives as equally important, whereas in 
bug prediction, the consequence of a false positive (testing a 
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file that has no bugs) is much less severe than the consequence 
of a false negative (letting a buggy file escape into the field). 

Instead, they specialize their performance measures to the 
way that the predictor functions are intended to be used: the 
files will be sorted according to their predicted number of bugs, 
worst first (descending order), and tested for bugs in that order. 
With that in mind, Ostrand and Weyuker advocate using two 
performance measures for bug prediction methods: the 
percentage of remaining faults found in the predicted-worst K 
files, and the percentage of faulty files not found among the 
predicted-worst K files. 

Our work generalizes from this insight, focusing on three 
performance measures all based on recall: faulty file recall, 
fault recall, and fault impact recall, defined and discussed in 
later sections. 

Correlation and Regression Analysis of Count Data. Most 
of the data we want to analyze fits the technical definition of 
count data. Statisticians define “count variables” as random 
variables whose values are restricted to the natural numbers 
(non-negative integers) and represent counted items, not ranks 
(e.g. 1st, 2nd, 3rd). Such data needs special treatments that are 
unfamiliar to many, because (a) ordinary least squares (OLS) 
regression behaves badly near zero, (b) many of the 
distributions are binomial, Poisson-like, or exponential, and (c) 
experimental data involving faults tends to be over-dispersed, 
for example by having more zero values than a standard 
Poisson distribution.  

Therefore, we have refrained from using trend lines or OLS 
regression on our count data. For correlation analysis we use 
Kendall’s tau-b rank correlation measure[8]. For constructing 
predictors; we will use negative binomial regression in our 
future work (Cameron and Trivedi [2]). 

Architecture Violation Detection. Sangal, Gordon, Sinha, 
and Jackson [22] detect architecture deviations directly, by 
detecting the dependencies that violate the designed 
architecture structure. Their study focused on detecting 
violations of syntactic dependency specifications. Based on the 
assumption that the essence of software modularity is to allow 
for independent module-wise evolution, Wong et al. [23] detect 
modularity violations, supported by their tool, Clio, by 
identifying change coupling that is not explained by Robillard’s 
heuristic [20]. Schwanke and Hanson [21] identify modularity 
errors by contrasting module membership with feature-based 
similarity. 

During software evolution, if two components often change 
together to accommodate modification requests, but they 
belong to two separate modules, Clio considers this a 
modularity violation. Such violations may be caused, for 
example, by side effects of a quick and dirty implementation, 
or mismatches between requirements and the original 
architecture design. Wong et al.’s preliminary work has 
demonstrated the feasibility and utility of this approach in 
Hadoop and Eclipse. They identified hundreds of apparent 
violations in each studied system, and 40% to 66% of them 
were conservatively confirmed, either by code inspection, by 
subsequent changes, or by subsequent developer comments. 
(They were not able to contact the developers to ask questions, 

but used change logs and community discussion boards to find 
confirming evidence.) 

We re-implemented the Clio concept of contrasting design 
coupling with change coupling, replacing certain academic 
assumptions with their industrial counterparts. 

III. CASE STUDY QUESTIONS 
Although many structure metrics have been investigated for 

quantifying software quality, the connection between structure 
and quality is not yet firmly established. When project 
managers are faced with these sorts of measures, or with 
architecture deviation reports, the typical response is,  

“What can I do with this information? There will always 
be some modules with high complexity, coupling, fan-
out, or size. What will I gain by reorganizing them? 
Why do I care if the code violates the architecture, as 
long as it works?” 

We hope that our answer will be,  
“These surface measurements point to deeper quality 
issues. Finding and fixing the quality problems will save 
time and effort – and the surface symptoms will also go 
away.”  

We reasoned this way: if we can show that a structure measure, 
say “fan-out”, applied to today’s code, correlates strongly with 
future bug-related effort, then we know that the developer can 
find bugs sooner by looking at files with high fan-out. It also 
suggests (but does not prove) that high fan-out itself is a cause 
of high bug-fix effort.  Therefore, finding out why a file has 
high fan-out could lead to an explanation for why it is prone to 
high bug-fix effort. Furthermore, we can use this linkage to 
justify fixing the problems we find. In this case study, we aim 
to answer the following questions:  

Q1. Does this combined structure/history measurement 
reveal critical architecture issues that are worth fixing?  

Q2. Are there any structure-based measures that can be 
used to predict quality variation in the absence of adequate 
revision history data?  

Q3. What measurements could help the developers make 
important architectural decisions, and how? 

IV. CASE STUDY PROCEDURE 
Our case study consisted of the following steps, with plenty 

of overlap and backtracking: 
1) Data collection: we obtained access to the project’s source 

code version control system and its task and bug tracking 
system. 

2) Structure and history measurement: we selected and 
adapted well-known, easily-understood measures. 

3) Validation: we validated the measures on the project’s own 
data, from releases 1 and 2, showing which measures were 
good predictors of future faults.  

4) Prediction: we used measurements from the first two 
release cycles to predict the relative number of fault-
related changes to each file in the future (after release 2.0).  

5) Uncovering architecture problems: we sorted the source 
code files by predicted future faults, then 
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a) Inspected each of the most fault-prone files in a 
graphical structure browser to see its role and 
connections in the architecture, and 

b) Clustered “distant” pairs of files (defined below) that 
frequently changed together, inspecting each cluster 
graphically to uncover potential structure problems.  

6) Presenting findings: We presented our analysis to the lead 
developers to find out which of the apparent problems 
were significant risks for the project. This inspired them to 
tell us about additional concerns. 

7) Investigating developer concerns: we identified the 
developers’ biggest concerns and combined our statistical 
and structural information to investigate and quantify 
them.  

Notice that steps 5 to 7 rely heavily on human judgments. The 
potential issues we identified provided the symptoms to the 
experts, motivating them to do the deep analysis. We are not 
looking to algorithms for solutions, only to help us find 
problems. Solving them is, so far, still the job of humans.  

V. CASE STUDY AND RESULTS 

A. The Project and Its Data 
The project we studied, code-named System J, is a two-year 

old development project for an industrial software product in 
an emerging product domain. 

We chose the project because we had unusually good 
access to project data and to the developers, but we tried to 
treat the developers as (cooperative) customers. This meant that 
we could not require that the developers spend time talking to 
us, nor could we impose work on them if they didn’t want to do 
it voluntarily. The project has had up to 20 developers involved 
at any given time.  It comprises about 300 KSLOC of Java in 
900 files, in 165 Java packages. The system aggregates a 
certain type of data from many sources and uses it to support 
both market and operational decision-making at a time 
granularity of minutes to hours. It has a service-oriented 
architecture and a transactional database, both implemented 
with third-party platform technologies. 

The software is being developed with an agile project 
discipline, where the project manager is also the customer 
proxy. The sprints are usually two weeks long, the system is 
rebuilt and automatically tested at least nightly, and each sprint 
ends with a customer demo and a retrospective. Fixing their 
bugs from the night before is usually each developer’s highest 
priority. The entire software history is kept in a Mercurial [15] 
repository, with only one main development branch. At the end 
of each sprint, the current version of each file is tagged with the 
sprint ID, so that it is possible to go back to each tagged set and 
find the code for a complete system version that passed a 
known set of automatic tests. Bug and task tracking data is kept 
in a JIRA database (www.atlassian.com/JIRA). Every time 
code is checked into Mercurial, the developer is expected to 
insert tag(s) in the change log entry, mapping the set to JIRA 
ticket(s). 

We treated System J’s project and package structure as the 
“as-built” subsystem decomposition tree. System J comprises 

25 Java projects, each containing a tree of packages, each 
containing multiple classes, each class in a separate file. 

We extracted the case study data from the Mercurial, JIRA, 
and Understand™ repositories and stored it in a PostgreSQL 
object-relational database system. The database consists of 11 
tables covering 4 aspects of project information: the file tables 
(paths, fileinfo_sprint, fileinfo_release), the revision tables 
(entries, commits, versions), the ticket tables (tickets and 
solveticket) and the people tables (persons and aliases). This 
database allows convenient exploration of the project data 
using simple queries, such as the histogram of change set sizes, 
or distribution of ticket types over time, as shown in Figure 1. 

 This article contains many real examples from System J. 
To protect company proprietary information, the domain-
specific words appearing in file names and graph labels have 
been systematically replaced with words from the domain of 
gardening.  

 

B. Measures of Structure and History  
 In this case study, we applied 6 single-file measures and 1 

file-pair measure, all at the granularity of Java classes, with a 
one-to-one correspondence between Java classes and source 
code files. For each file f and each pair of files (f, g), we 
measure:  
1) File size: Source code file size of f in kilobytes. 
2) Fan-in: the number of source code references from other 

files to elements of f. 
3) Fan-out: the number of source code references from f to 

elements of other files. 
4) Change frequency: number of times that f is checked in. 
5) Ticket frequency: the number of different JIRA task and 

bug tickets for which f was modified. This frequency is 
also broken down by ticket type: bug, feature, or unknown.   

 

 
Figure 1: Changes set sizes, ticket types 
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6) Bug change frequency: the number of change sets that 
contain f and reference at least one bug ticket. 

7) Pair change frequency: the number of change sets in 
which f and g both appear.  

We chose the measures above to investigate first because 
they were readily available, easily applied, and widely 
understood.  

C. Exploratory Data Analysis 
To assure ourselves of the quality and relevance of the data, 

we used several exploratory data analysis techniques, including 
histogram inspection, scatter-plotting relationships, and 
comparing two sets of the same kind of data from different 
time intervals. The data we used spanned two development 
cycles of the subject system, release 1 (R1) and release 2 (R2). 
For some types of analysis we treated the changes during 
release 1 as “the past”, the code structure at the end of release 1 
as “the present”, and the changes during release 2 as well as the 
structure at the end of release 2 as “the future”. For other 
analyses we combined the changes in release 1 and release 2 
into a single, large time interval (R1+R2), “the past”, using the 
code structure at release 2 as “the present”, and subsequent 
changes as “the future”. Here are some analysis examples, 
which also begin to unfold the story of the data. 

1) Distribution of Each Measure’s Values. We started by 
looking at the distribution of each measure’s values.  For 
example, in Figure 2 we see a histogram of the number of 
changes per file. (Note the logarithmic scale, used to conserve 
column-inches.) It shows a typical exponential decay curve, up 
to a frequency of about 60. Beyond that, we see about two 
dozen “outliers” that change much more frequently than the 
rest. All six single-file measures had similar histograms.  

2) Scatter Plots of Relationships between Measures. The 
first two measures for which we examined the outliers were 
fan-in and fan-out.  While the files with high fan-out tended to 
be error-prone, those with high fan-in did not.  Instead, they 
were frequently infrastructure classes, with many instances or 
many sub-classes, suggesting that “high fan-in” is 
architecturally significant. 

We used scatter plots to compare each of the 6 single-file 
measures to each other.  For example, the plot in Figure 3 
shows a likely correlation between R1 fan-out and R2 change 
frequency. However, this plot reminds us that we cannot use 
the Pearson correlation measure, nor ordinary least squares 
(OLS) regression, on this kind of data, because most of the data 
points lie on or close to zero in some dimension. 

Instead, we compute correlations using Kendall’s tau-b 
rank correlation measure [8], which calculates the extent to 
which two measures rank-order the same sample points in the 
same order. 

߬஻ሺܨ, ሻܩ ؝
,ܨሺ݀ݎ݋ܿ݊݋ܿ ሻܩ െ ,ܨሺ݀ݎ݋ܿݏ݅݀ ሻܩ
,ܨሺ݀ݎ݋ܿ݊݋ܿ ሻܩ ൅ ,ܨሺ݀ݎ݋ܿݏ݅݀   ሻܩ

where ܿ݀ݎ݋ܿ݊݋  and ݀݅݀ݎ݋ܿݏ  count the number of pairs of 
entities that are in the same order (resp. opposite order) in 
rankings F and G. The value of ߬஻ ranges from -1 (exactly the 
opposite order) to +1 (exactly the same order), with zero 
indicating no correlation. Pairs of points that have the same 
value under either of the measures (“ties”) are ignored in the 
calculation, and the correlation is not affected by how close or 
far apart two points are in the two orderings. 

Table 1 gives the correlations between each pair of single-file 
measures, calculated over R1+R2. The table is ordered by how 
closely each of the other measures correlated with bug change 
frequency (bugs).  It shows statistically significant correlations 
(α<1%) between each pair of measures except those 
highlighted, but the correlation is much weaker when one of 
the measures is fan-in. 

3) Comparing Release 1 with Release2. We compared R1 
and R2 values of all six single-file measures (see Table 2), and 
found that the R1 structure measures each had a strong 

Figure 3. Scatter plot, suggesting correlation 
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correlation (greater than 0.90) with the same measurement in 
R2, confirming that structure changes slowly. For history 
measures, the same-measure correlations between R1 and R2 
were not as strong, but still evident, ranging from .48 to .66. 
These correlations give us some confidence that each measure 
can at least predict future values of itself. 

We also took an advance peek at how well these measures 
could predict bug-related changes.  The correlations “vs. bugs” 
in the table above show that the R1 values of each of them has 
a significant correlation with R2 bug-related changes, and that, 
except for fan-in, the correlations are competitive with each 
other.  

From inspecting the scatter-plots and histograms and 
calculating the correlations, we inferred that all of the 6 single-
file measures were sufficiently well-behaved to be suitable for 
the next step, except that fan-in would be a poor predictor of 
bugs. By contrast, most of the pair change coupling measures 
we looked at were ill-behaved or hard to relate to practical 
tasks. We decided to use only pair change frequency at first, 
and revisit the other pair change measures later. 

D. Validation on Project Data 
Extending the approach of Ostrand and Weyuker [17], we 

chose three variations of information retrieval’s recall measure 
as the primary bug-prediction performance measures. We 
assume that the software measure whose performance is being 
evaluated will be used to sort the files, “worst first”, after 
which the developers will test or examine the first K files to 
look for faults. Recall is defined as the fraction of the relevant 
‘instances’ that are ‘retrieved’ by examining those K files. The 
value of K is uncertain, because it will depend on available 
resources and competing tasks, so the measure should perform 
well over a wide range of values for K. Therefore, the 
performance of a bug prediction method is the area under its 
recall curve. The three variations differ by what an ‘instance’ 
is: 

Faulty file recall. An ‘instance’ is a file that is changed (in 
the future) at least once due to any bug ticket, but additional 
bug tickets and additional changes don’t count extra. 

Fault recall. An ‘instance’ is a pair <file, bug ticket>, 
where the file is changed at least once due to that bug ticket. 
Additional changes due to the same ticket don’t count extra. 

Fault impact recall. An ‘instance’ is a triple <file, change 
set, bug ticket>, where the file is a member of the change set 
and the change set is associated with the bug ticket. If a file is 
checked in several times due to the same bug ticket, each time 
is a separate instance.  

Fault recall puts more emphasis (compared to faulty file 
recall) on files with multiple faults than on files with just one 
fault. Fault impact recall puts even more emphasis on faults 
that are hard to fix (inducing multiple check-ins).  

The validation process calculated the measures on R1 data 
and used them to predict bugs that were found in R2. It then 
plotted each measure’s R2 recall curve for each of the three 
recall performance measures. Figure 4 shows the R2 fault 
impact recall curves. These curves are Alberg diagrams [14]. 
(Out of 528 files, the grid line at 106 represents the first 20% of 
the files. The graph stops at 264 files (50%) to save column-
inches, without loss of insight.) 

Each colored curve on the chart represents sorting the files 
according to a different measure, for example, decreasing size, 
decreasing fan-out, decreasing past bugs, etc. A given point 
<X,Y> on curve Z means that, when sorted according to 
measure Z, the first X files will incur Y% of the total R2 bug-
related changes. 

The top curve, labeled “Oracle”, represents the best 
possible performance, achievable only if the files are sorted in 
descending order of R2 bug-related changes.  The remaining 
curves are closely spaced. Each of them shows 70% to 80% 
bug impact recall with the first 20% of the files. This 
performance is consistent with the findings of Ostrand, 
Weyuker, and Bell [16]. 

Combining the measures was a little better than using just 
one. Median R1 Rank looked at each file’s rank with respect to 
code size, fan-out, and past changes, and used the median value 
of these three ranks to sort the files. Thus sorted, 20% of the 
files accounted for  about 80% of the R2 bug-related changes.  

We also compared the performance of these measures for 
fault recall and faulty file recall. The spacing and ordering of 

Table 2: Rank Correlations: R1 vs. R2 

R1 vs. R2  vs. same measure  vs. bugs 
fan‐in 0.921 0.171 
fan‐out 0.942 0.508 
size 0.902 0.598 
changes 0.478 0.586 
tickets 0.650 0.648
bugs 0.661 0.661 

 

 
Figure 4: R2 fault impact recall 
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the curves varied little, but the curves for faulty file recall were 
lower: the top 20% of the files by each stand-alone measure 
identified only 50-60% of the buggy files.  

Doing less well on the faulty file recall measure is not 
surprising, because a file with only a single fault has little 
effect  on the other performance measures, but has the same 
effect as a file with a dozen faults or a hundred bug changes 
under the faulty file recall performance measure. 

This analysis gives us optimism that ranking the System J 
files according to one or more of the top 5 measures will give a 
good order to look at the files.  Although it is tempting to draw 
further inferences, these experiments did not analyze nearly 
enough data to distinguish among the top 5 measures, and, 
since they only involved one project, do not tell us what to 
expect on other projects. 

Further research will be needed to create an optimized 
composite measure, presumably using negative binomial 
regression, and measure its performance.  

E. Uncovering Architecture Problems 
Having confirmed that the R1 measures predict R2 faults, 

we next used them to discover architecture issues by: analyzing 
outliers; visualizing their positions within the architecture; and, 
clustering “distant” files that frequently changed together.  

Since we would need the developers’ knowledge and good 
will to complete the analysis, we could no longer treat a date in 
the past (the end of R1) as if it were “the present”. Since the 
analysis took place at the time that R2 actually ended, we 
tabulated the measures on R1+R2 and used them to predict 
where faults would be found in the next release, “R3”.  We 
would judge our success solely by the developers’ reactions 
and follow-up actions. 

1)  Outlier Analysis – Individual Files. Table 3 lists the 
predicted fault-prone files “worst first”, sorting them according 
to the median of their ranks by R1+R2 fan-out, size, and 
change frequency.  

First, we noticed that at the very top of the list, all five 
measures seem to agree. The top 8 files were ranked among  
the top 14 by every measure. 

The first time we tried to present such results to the 
developers, to elicit feedback, we just showed them a list like 
this and asked them to comment on each of the top 10 or so.  

However, we found that staring at lists of file names and 
measure data was overwhelming; the developers gave us little 
response.  So, before going back to them, we tried investigating 
the top few files ourselves, using a graphical structure browser. 

2)  Structure Browsing with Understand™. Scientific 
Toolworks, Inc. makes a static code analysis tool called 
Understand™. It creates a database of code structure and cross-
reference information, processes queries on this information, 
and renders the results using Graphviz, a popular, free graph 
drawing engine originally developed at AT&T Research. 
Understand’s structure diagrams render files and dependencies 
as boxes and arrows, and render sub-system structure as nested 
boxes. Its graph browsing user interface provides a convenient 
way to incrementally refine a query until you get the diagram 
you want.   

Using this tool, we would analyze a file by creating a 
diagram that included the file itself and all of its immediate 
neighbors in the cross-reference model, including the packages 
in which these files are located. Showing the enclosing 
packages provides guidance for analysts who are unfamiliar 
with some of the files.  

Such a diagram can then be further customized, e.g., by 
adding neighbors-of-neighbors, to help the code expert 
discover or remember what was causing the file to be fault-
prone. We found that showing such diagrams to the code 
experts elicited many more comments than the lists of data 
alone. Sometimes the comments were directly related to the 
diagram at hand, but sometimes the diagram reminded the 
developer of another issue, not seen in the diagram at all.  The 
point is that helping the developers visualize structure was an 
effective problem elicitation method. 

By this method, we were able to discuss many of the most 
fault-prone files with the developers and, in most cases, either 
draw their attention to a problem they hadn’t noticed, or give 
them concrete evidence of a problem they had already 
suspected.  In two cases, however, the developers stood their 
ground, saying that, although the structure looked suspicious, it 
was necessary for the job that the class in question was doing.  

3)  Outlier Analysis – Pairs and Clusters. In addition to 
measuring individual files, we investigated the structure and 
history of pairs and clusters of files. According to Parnas [19], 
the decomposition of a system should be based on mature, 
stable design decisions and should encapsulate known future 
variabilities, so that the impact of each kind of future change is 
as limited as practical.  

We first applied the approach of Wong et al. [23] to System 
J, unmodified, but encountered several challenges. First, Clio’s 
algorithm assumes that each change originated in a “starting 
change set” and was propagated to others. However, in reality, 
when developers commit changes, the “starting change set”, if 
it exists, is only in the developer’s mind and there is no way for 
us to determine later what it was. 

Second, Clio’s definition of modules, that is, structural 
proximity, was based on a transitive closure of Robillard’s 
relevancy heuristic, weighted by path length. However, the 
heuristic itself was hard to explain, and not experimentally 
validated by Wong.   

Table 3: Most error-prone files, by median R1 rank. 

file fan-out size changes bugs tickets 
Che 8th 5th 3rd 1st 1st 
Fig 6th 7th 2nd 4th 2nd 
Yew 1st 4th 1st 5th 7th 
Abiu 2nd 8th 11th 2nd 3rd 
Bael 5th 12th 5th 3rd 6th 
Date 11th 6th 12th 7th 5th 
Duku 4th 10th 9th 8th 8th 
Imbe 3rd 14th 4th 9th 9th 
Lime 51st 19th 13th 6th 4th 
Neem 160th 11th 7th 11th 11th 
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We also realized that, in industrial settings, each project – 
indeed, each developer – may have a slightly different way of 
mapping code structures, files and folders to modules and 
subsystems. We should first agree on what a module is, before 
presenting the “modularity violations” to the developers.  

 To overcome the challenge of not having the “starting 
change set”, we chose to ignore the question of which file or 
files “caused” a change, and simply counted the frequency with 
which pairs of files changed together. To avoid conflicting 
definitions of “module”, we used the project’s own definition, 
namely, that a Java package is a module.  

We then defined structural proximity in terms of “local” 
and “distant” change pairs: a change pair <X,Y> is considered 
“local” if (a) class X depends directly on class Y, or Y depends 
on X, or (b) X and Y belong to the same Java package. 
Otherwise they are considered “distant”.  This definition will 
be refined in future research to consider dependency path 
lengths greater than 1 and to consider nested packages. 

Based on these two modifications, we used a simple “single 
link” clustering algorithm to group distant change pairs: the 
similarity between two distant files was defined to be their joint 
change frequency, provided that the frequency exceeded a 
specified threshold. Each file that was part of at least one 
frequent, distant change pair was placed in the same cluster as 
the distant file with which it changed most frequently. After all 
distant file pairs were thus clustered. Any remaining files were 
then added to existing clusters based on local rather than distant 
change pair frequencies. (Exploration of better clustering 
algorithms is left to future work.) 

For each cluster, we generated a structure diagram 
containing the cluster members themselves and their shared 
neighbors in the dependency graph. These diagrams give a 
sense of how severely a cluster cross-cuts the layer-dependency 
architecture. Their shared neighbors give hints about why they 
are frequently changed together.  

For example, Figure 5 shows the four files (highlighted in 
yellow) that made up the three most frequent, distant change 
pairs in System J, along with five of their shared neighbors 
(colored lavender) in the dependency graph. Two of the files 
belong to RestEJB and two belong to Yew. Together, the four 
files and the five shared neighbors span four of the five main 
system layers. This suggests that the changes have been 
rippling across many, far-flung parts of the system. 

In another cluster (not shown), a file in the Entry Points 
layer was changing jointly with several key files in the 
DataAccess package. That Entry Point file was also ranked 
number one in the whole system by fan-out. It looked as if 
changes in the Data Access layer were propagating to this 
Entry Point file, suggesting that some critical architectural 
interfaces are not stabilized.  This observation eventually led to 
the renovation task described in the next section.  

We also inspected the source code of the most-frequently 
changed pairs, to see if the reasons they were changing together 
were obvious.  Some example reasons we found were: cloned 
code; logic moving from one file to the other; and shared 
dependencies that caused them to receive the same propagated 
changes. 

 In two cases we found shared, unencapsulated assumptions 
about the representation of time.  In one case, the changes 
happened when the granularity of time changed from minutes 
to milliseconds. In another case, the representation of time 
intervals split into two forms: “[a,b)” and “(a,b]”. (That is, both 
forms are half-open, but one is open at the beginning and the 
other is open at the end. 

Although space does not allow us to describe these 
examples more fully, in most cases we found a definite cause 
for the files changing together that was not documented and not 
readily detected by dependency analysis. Therefore, unusually 
high joint change frequency data, in the absence of syntactic 
“explanations”, seemed to be significant and useful 
information. 

F. Investigating a Developer Concern 
In the course of discussing the R1+R2 outliers with the 

developers, they began volunteering information about their 
own architectural concerns. We chose a few of those concerns 
to investigate, producing measurements and diagrams to 
quantify and illustrate them. For example, a senior developer 
noticed that several of the most fault-prone files belonged to 

 
Figure 5. Three most frequent, distant change pairs
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the same entry-point package, and mentioned that there was “a 
lot” of business logic being written in the entry point layer 
instead of the business logic layer. We used the layer-
dependency model to investigate and illustrate the problem, as 
shown in Figure 6, where (we were told) all of the connections 
from RestEJB to dao-SIMPLE and dao-Carob violate the 
architecture. We found a total of 8 files with many of the same 
violations. One consequence was that the misplaced business 
logic was not being adequately tested in the nightly builds, 
because the test driver bypassed the entry-point layer to test the 
business logic directly.  Inadequate testing in turn led to late 
detection of bugs and many bug-related changes. The root 
cause was inadequate architecture awareness by junior 
developers. The senior developer wrote a small renovation 
proposal, using our data and diagrams to justify the work of 
moving the business logic to the proper layer. After the 
proposal was approved and the renovation completed, many of 
the top 50 fault-prone files had been moved, split, or deleted, in 
order to move the business logic to the proper layer. 
Afterwards, the senior developer asked to see the dependency 
diagram again, after the clean-up – and spotted a faulty file she 
had overlooked! 

Note that our measurement methods did not, by themselves, 
diagnose the problem. Also, the moving, splitting, and deleting 
were only side-effects of the clean-up. It was the synergy 
between measurement, prediction, visualization, and expert 
insight that led to a successful renovation.  

VI. DISCUSSION OF RESULTS 

A.  Answering the Case Study Questions 
Q1. Does this combined structure/history measurement 

reveal critical architecture issues that are worth fixing?  
Indeed, by combining evolution history information with 

file dependency structure, we were able to identify the 
following types of issues. First, there are key interface files that 
are supposed to be stable and correct, but actually have faults 
and change frequently. Second, frequent, distant change pairs 
often correspond to important architecture weaknesses or 
violations. Third, structure gives us a visual context for 
analyzing change associations found in the history, discovering 
important, but undocumented shared assumptions that should 
be made explicit. 

Q2. Are there any structure-based measures that can be 
used, without history, to predict quality variation?  

For System J, size and fan-out were each fairly good stand-
alone predictors of fault-proneness. When a large file also has 
high fan-out, it should be examined for accidental complexity 
and architecture violations. Although fan-in was not a good 
predictor of quality, high fan-in files did tend to be 
architecturally- significant infrastructure classes. 

Q3. What measurements could help the developers make 
important architectural decisions, and how? 

In addition to the well-known measures we set out to apply, 
we discovered several helpful evaluation techniques. Outlier 
investigation was a good way to find low-hanging, bad-
smelling fruit. Predicting fault-proneness helped to prioritize 

architecture risks. Clustering distant change pairs seemed to 
bring together locality violations with the same root cause. 

B. Visualizing Structural Concerns  
Although the software metric outliers often pointed to 

architecture issues, we had trouble getting the developers’ 
attention until we showed them layer-dependency diagrams 
that illustrated the problems. These diagrams also elicited other 
architecture issues we had not yet found. From this experience 
we are convinced that interactive, visual architecture models 
are essential for analyzing and communicating architecture 
issues. 

C. Overcoming Dirty Data 
The incomplete data linking change sets to JIRA tickets 

confirmed the discoveries of others, but it also suggested its 
own solution(s). Future studies should check for such problems 
early, check correlations between change types, developer 
habits, and other measurable attributes, then tailor the 
prediction functions to account for them.  

D. Novelty and Effectiveness 
 To our knowledge, this is the first case study that 

demonstrates the applicability and utility of both combining 
and contrasting structure and history measurements in a 
realistic industrial setting. The clustering algorithm, adapted 

 
Figure 6. Entry point class with business logic 
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from Wong et al.’s work, makes it possible to apply modularity 
violation detection techniques in a practical way. Our case 
study is effective in that the experiment had minimal 
disturbance to development process. Instead, all the measures 
and data mining and analysis were accomplished independently 
and we only reported to the team when our analysis suggested 
suspicious problems.  Finally, since System J uses JIRA and 
Mercurial, which are both popular project support tools, we 
expect that the approach is repeatable on other projects using 
similar tools.   

E. Assumption and Limitations 
 This work is limited first because we only studied one 

project, and we cannot claim that the result can be generalized 
to other projects with different domains or using different tools 
or languages. We only used the simplest structure and history 
measures. In the future, we plan to apply more advanced 
measures, such as conditional change probability, shortest 
directed/undirected dependency path, age-weighted history 
measures, and betweenness centrality [5]. 

VII. CONCLUSION 
We have reported one case study of measuring code 

structure and history to identify architecture problems in an 
industrial project. It demonstrated the effectiveness of the 
combination by enabling developers to visualize the 
architectural roles and impact scope of files with high fault and 
change frequency, which justified and supported a successful 
renovation task.  
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