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An experimental and computational investigation of the unsteady separation behaviour
of two spheres in Mach-4 flow is carried out. The spherical bodies, initially
contiguous, are released with negligible relative velocity and thereafter fly freely
according to the aerodynamic forces experienced. In experiments performed in a
supersonic Ludwieg tube, nylon spheres are initially suspended in the test section
by weak threads which are detached by the arrival of the flow. The subsequent sphere
motions and unsteady flow structures are recorded using high-speed (13 kHz) focused
shadowgraphy. The qualitative separation behaviour and the final lateral velocity of the
smaller sphere are found to vary strongly with both the radius ratio and the initial
alignment angle of the two spheres. More disparate radii and initial configurations
in which the smaller sphere centre lies downstream of the larger sphere centre each
increases the tendency for the smaller sphere to be entrained within the flow region
bounded by the bow shock of the larger body, rather than expelled from this region.
At a critical angle for a given radius ratio (or a critical radius ratio for a given angle),
transition from entrainment to expulsion occurs; at this critical value, the final lateral
velocity is close to maximum due to the same ‘surfing’ effect noted by Laurence &
Deiterding (J. Fluid Mech., vol. 676, 2011, pp. 396–431) at hypersonic Mach numbers.
A visualization-based tracking algorithm is used to provide quantitative comparisons
between the experiments and high-resolution inviscid numerical simulations, with
generally favourable agreement.
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1. Introduction
The study of aerodynamic interactions between separating bodies in high-speed flow

is of interest in such areas as meteoroid fragmentation, the deorbiting of space debris,
and launch-vehicle stage separation. Much of the previous work exploring fundamental
aspects of such interactions has been performed in the context of the atmospheric
disruption of meteoroids. Passey & Melosh (1980) attempted a systematic analysis of
the separation behaviour of discrete fragments, assuming a purely lateral separation
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FIGURE 1. The lateral fragment separation model assumed by Passey & Melosh (1980).

between two bodies of radii r1 > r2 (see figure 1). Using simple dimensional
arguments, they derived the following scaling law for the final lateral separation
velocity, VT , of the smaller body:

VT =
√

C
r1

r2

ρa

ρm
V. (1.1)

Here, V is the velocity of the meteoroid through the atmosphere, ρa and ρm are the
atmospheric and meteoroid densities, respectively, and C is a constant that Passey
& Melosh determined through an examination of various terrestrial crater fields to
lie between 0.03 and 2.25. Numerical simulations of the symmetrical separation of
equally sized bodies were carried out by Artem’eva & Shuvalov (1996) and Artemieva
& Shuvalov (2001), yielding values of C in (1.1) of approximately 0.2 and 1 for two
and multiple bodies, respectively. These results were incorporated into a model used to
simulate specific fragmentation events (Artemieva & Shuvalov 2001).

However, a detailed analysis of a videotaped recording of the Morávka
fall (Borovic̆ka & Kalenda 2003) revealed serious shortcomings in Artemieva &
Shuvalov’s model, with measured separation velocities reaching values of up to an
order of magnitude larger than those predicted. An explanation for this discrepancy
is suggested by the study of Laurence & Deiterding (2011), which demonstrated that
findings for equally sized fragments cannot be accurately extended to the separation
behaviour of bodies of different sizes. Laurence & Deiterding also showed that the
scaling law of Passey & Melosh, (1.1), does not adequately predict the separation
behaviour of unequally sized bodies. This is because, contrary to Passey & Melosh’s
assumption of a purely lateral separation, the smaller body of the two (referred to
hereinafter as the secondary body) is subject to a higher axial acceleration and
thus travels both laterally and downstream relative to the larger (primary) body.
This can lead to a phenomenon referred to as ‘shock-wave surfing’, in which the
secondary body traces a trajectory so as to follow the bow shock of the primary body
downstream. In doing so, it develops a significantly larger lateral velocity than would
otherwise be possible, since in the surfing configuration, the interacting flow field
produces a substantial repulsive lateral force on the secondary body. More specifically,
the outer side of this body is exposed to singly shocked flow, whereas the flow
on the inner side is processed by the primary bow shock before passing through
the secondary shock, and thus experiences a smaller overall stagnation pressure loss
related to the weaker entropy rise. Bodies smaller than a critical value do not develop
a sufficiently high lateral velocity in the initial stages of separation to commence
surfing and are quickly entrained within the flow region bounded by the primary
bow shock; bodies significantly larger than the critical value are soon expelled from
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FIGURE 2. Schematic of the GALCIT Ludwieg tube facility (all dimensions are in metres)
with a blow-up of the test-section region inset: A, tube (internal diameter 0.298 m); B,
diaphragm holder; C, converging–diverging Mach-4 nozzle (exit diameter 0.315 m); D, test
section (internal diameter 0.391 m); E, suspended spheres; F, dump tank.

this region. Thus, the ratio of body sizes is a crucial parameter in determining the
separation behaviour.

The main intent of the present article is to provide an experimental counterpart
and validation to the study of Laurence & Deiterding (2011), which was based
on numerical simulations and theoretical analysis alone. The experimental facility
employed is the GALCIT Ludwieg tube, capable of producing supersonic flows with
Mach numbers of up to 4.0. While this is significantly lower than the hypersonic Mach
numbers of the earlier study, a preliminary numerical investigation indicated that the
surfing effect still appears at Mach 4. Thus, an extensive experimental investigation
was undertaken to explore the separation characteristics of spherical bodies under
such flow conditions. The idealized configuration for the study is that of two initially
contiguous spheres travelling in supersonic flow, released instantaneously with zero
relative velocity and thereafter allowed to fly freely. Spherical geometries are chosen
to avoid the additional complication of induced rotations; however, considering that
the physical effects described above are in no way particular to flow about spheres,
the results obtained are expected to hold, at least qualitatively, for other regular
geometries.

The structure of this article is as follows. In § 2, the experimental facility and
apparatus are detailed, including a description of the visualization-based tracking
technique which constitutes the principal means of measurement. In § 3, the
computational model employed alongside the experiments is described and verified.
Results of the investigation are presented and discussed in § 4, and conclusions are
drawn in § 5.

2. Experimental facility and apparatus
2.1. Facility

All experiments were performed in the GALCIT Ludwieg tube, a schematic of which
is shown in figure 2. The facility comprises a 17.4 m long tube, an axisymmetric
converging–diverging contoured Mach-4 nozzle, a test section and a dump tank. It is
a free-jet facility, the cylindrical test section having an internal diameter of 0.391 m
compared to the nozzle exit diameter of 0.315 m. The area ratio of the nozzle is
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11.96; the difference from the isentropic one-dimensional expansion ratio for a Mach-4
flow (10.72) is due to viscous effects. In the present experiments, the diaphragm was
placed between the tube and the nozzle, rather than downstream of the test section.
The facility is thus said to be run in ‘upstream-diaphragm’ mode, with the nozzle,
test section and dump tank comprising the downstream section of the facility. In
upstream-diaphragm mode, the flow-establishment time is reduced from approximately
25 to 3.5 ms, but the passage of the diaphragm fragments through the test section
can be problematic: in a number of the present experiments, fragments were observed
in the visualization sequences (described shortly) to strike or influence the free-flying
spheres, in which cases the results had to be discarded.

A test begins by inserting a 0.13 mm-thick polycarbonate sheet into the diaphragm
holder; the tube and the downstream section are then simultaneously evacuated,
typically to 200 Pa. Thereafter, the downstream section is maintained under vacuum
while the tube is filled, quickly to 150 kPa, then slowly until the diaphragm ruptures.
The mean diaphragm burst pressure in the present experiments was 230 ± 40 kPa.

After diaphragm rupture, an expansion wave propagates upstream into the tube,
reflects off the endwall, and propagates downstream. The rupture also generates a
shock wave that travels into the downstream section; this is partially reflected from the
curved nozzle wall, with the main part of the shock simply propagating into the dump
tank. The shock is followed by a contact surface which forms the leading boundary of
the main test flow. The partially reflected shock continues to create unsteadiness in the
test section for 3–4 ms, whereafter the steady test time commences; steady flow ends
upon arrival of the reflected expansion wave. Further details regarding the facility can
be found in Mouton & Hornung (2008).

2.2. Free-stream characterization and measurements
The free-stream conditions are calculated by considering an unsteady constant-area
expansion of the gas in the tube, followed by a steady expansion through the
contoured nozzle. First, the Mach number in the tube, Mt, is determined from the
area ratio of the tube to the nozzle throat, At/A∗, and the ratio of specific heats, γ :

At

A∗
= 1

Mt

(
γ + 1

2

)−(γ+1)/(2(γ−1))(
1+ γ − 1

2
M2

t

)(γ+1)/(2(γ−1))

. (2.1)

The effective reservoir pressure and temperature, p0 and T0, are then calculated in ratio
to the fill pressure and temperature, pf and Tf , respectively:
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The free-stream conditions (subscript ∞) can then be determined using the steady
isentropic one-dimensional relations, assuming a final Mach number of 4.0. Typical
conditions for the tests were ρ∞ = 0.07 kg m−3, p∞ = 1.4 kPa and u∞ = 670 m s−1,
with a corresponding Reynolds number for a 25.4 mm diameter sphere of 2.7× 105.

To confirm the accuracy of the derived free-stream conditions, a series of Pitot
pressure measurements were performed. A Pitot probe was designed and instrumented
with a Kulite XCS-190-10A-L piezoresistive pressure transducer, running through a
Dynamics 7600A signal conditioner. An example of a Pitot pressure trace appears in
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FIGURE 3. A sample Pitot pressure trace of the test-section flow: (a) the complete steady
flow time of the tunnel; (b) the typical test duration employed in the present experiments.
The dashed line in both plots indicates the theoretical Pitot pressure derived from the fill
conditions.

figure 3: the entire steady flow time of approximately 95 ms is shown in figure 3(a),
while the test duration of ∼20 ms employed for the present tests is shown in
figure 3(b). The start-up period of the flow is seen to last approximately 3.5 ms
from the instant the initial shock wave produced by the diaphragm rupture reaches the
probe. After flow establishment, the standard deviation in the measured Pitot pressure
from the mean value over the steady flow period is less than 1 %. In three further
Pitot-probe experiments, deviations between 1 % and 2 % were recorded.

Also shown in both plots of figure 3 is a dashed line indicating the theoretical
value of the Pitot pressure determined from the free-stream conditions and the
Rayleigh–Pitot formula. The theoretical result differs from the mean measured value
over the entire steady flow period by 1.2 %, and by 0.7 % between 5 and 20 ms.
In the other three Pitot-probe experiments, discrepancies of less than 0.5 % were
obtained, indicating that the theoretical estimates of the free-stream quantities give
good approximations to the actual experimental values.

2.3. Model arrangement
The test articles in this study were spheres manufactured of Nylon 6/6, ranging in
diameter from 6.35 to 25.4 mm. Several methods of mounting the spheres in the test
section were trialled, the intent being to provide a weak suspension that would be
detached and swept away during the flow start-up period while imparting a minimal
impulse to the spheres. The most effective solution of those tested was to suspend
each sphere by dental floss from the test section roof, with the attachment formed by
melting a single fibre from the frayed floss end to the Nylon body; this ensured the
weakest part of the suspension was the link between the body and the tether. Two
threads in a V-arrangement were attached to the primary sphere, and a single thread to
the secondary sphere. Protrusions of less than 100 µm remained on the sphere surfaces
after release. A sequence of shadowgraph images showing the start-up of the flow and
the detachment of the threads is presented in figure 4. The arrival of the initial shock
and the contact surface are visible in the second and third images, respectively. The
thread detachment is completed within 1 ms of the initial shock arrival at the spheres.
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FIGURE 4. Sequence of images showing the start-up of the flow and the detachment of the
threads from the spheres, at times (defined from the arrival of the initial shock): −0.08, 0,
0.54, 0.77, 1.00 and 1.23 ms.

2.4. Visualization set-up and tracking technique
A ‘focused’ shadowgraph optical set-up, consisting of a conventional Z-type schlieren
arrangement with the knife-edge removed (Settles 2006), was utilized in this study, the
intent being to minimize the influence of the visualized flow features on the tracking
technique to be described shortly. The focal lengths of the concave mirrors and the
focusing lens were 1.5 m and 75 mm, respectively. The light source was a Ostar
four-chip 4000 K colour temperature LED mounted onto a surplus air-cooled heat sink,
driven continuously by a Harrison Laboratories 6267a DC Power Supply. Images were
recorded with a Vision Research Phantom V7.1 SR-CMOS monochrome high-speed
camera at a resolution of 512 × 304 pixels; the image magnification was such that a
25.4 mm diameter sphere (as was generally used for the primary body) had an image
diameter of approximately 76 pixels. The frame rate and exposure time were 13 kfps
and 2–3 µs, respectively.

The sphere displacements, velocities and accelerations during separation were
determined through a visualization-based tracking technique. This technique, employed
in a basic form in Laurence, Deiterding & Hornung (2007) and subsequently refined
in Laurence & Karl (2010) and Laurence (2012), may be summarized as follows. For
each image in the recorded sequence, a pixel-resolution Canny edge detection (Canny
1986) is performed (the standard deviation of the Gaussian filter in the edge detection
here was 0.8 pixels) and a semi-automated edge-tracing algorithm is used to select
the edge points corresponding to each of the sphere outlines. These edge points are
then reprocessed using a subpixel-resolution detector, and the sphere centre-of-mass
position, (x0, y0), and radius, r, in image coordinates are determined by fitting a
circle in the least-squares sense to the calculated points. A priori knowledge of
the physical sphere radii then allows the x0 and y0 curves to be converted into
physical displacements. Velocities and accelerations can be obtained by numerically
differentiating the displacement curves; the resulting amplification of measurement
noise, however, usually means that some form of smoothing is subsequently required,
especially for accelerations. Alternatively, if either the velocity or the acceleration is
assumed to be constant over a certain time period, polynomials of first or second
order can be fitted to the displacement profiles to yield mean quantities. The reader
is referred to Laurence & Karl (2010) and Laurence (2012) for further details of the
technique. In the experimental results presented in § 4, time-resolved velocities are
derived from the displacement profiles by second-order central differencing, followed
by smoothing with a 5-point moving-average filter. The accelerations (from which
the force coefficients are derived) are obtained from a second-order central-difference
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approximation to the second derivative of the displacement data, followed by three
consecutive applications of a moving-average filter of widths 15, 9 and 7 points,
respectively.

In the present application, an additional improvement to the tracking technique was
the introduction of a correction for optical distortions, described in the Appendix.
To estimate the technique precision, for each experiment a quadratic polynomial was
fitted to the displacement of the primary sphere over the time period that it was
outside the domain of influence of the secondary sphere, and thus subject to a constant
acceleration. We assume that the precision corresponds to the standard deviation of
the residuals to this quadratic fit. For a 25.4 mm diameter sphere, a typical value of
2–3 µm was found (corresponding to 0.006–0.01 pixels); this number can be expected
to rise to around 6 µm for a 6.35 mm diameter sphere. Although a higher accuracy of
∼1 µm was obtained for sphere measurements under calibrated conditions by Laurence
(2012), the present estimate is consistent with both the smaller image-sphere diameter
and the more challenging experimental conditions.

2.5. Analysis of experimental errors
In this subsection we attempt to characterize both the uncertainties in the
experimentally measured quantities and the deviations of the experiments themselves
from the model problem of the study, i.e. that of two initially contiguous spheres
released instantaneously and with zero relative velocity in a steady flow. The quantity
of principal interest here is the non-dimensional lateral velocity, v′y =

√
ρm/ρavy/V;

thus, we wish to determine the uncertainties in the quantities in this non-dimensional
term, as well as those in the independent parameters that are varied in the
investigation, namely the radius ratio, r2/r1, and the initial alignment angle between
the sphere centres, θ0.

The diameter and mass of both spheres were measured before each experiment;
the precision of the Vernier caliper used for the diameter measurement was 12.7 µm.
Over all measured spheres, the maximum deviation recorded in the diameter from its
nominal value was 25 µm, giving a maximum discrepancy in the radius ratio ranging
from 0.14 % for r2/r1 = 1 to 0.6 % for r2/r1 = 0.25. The measured diameters and
masses were used to determine the average sphere density, ρm; this average value,
rather than individually measured values, was used in determining each v′y. Over all
spheres, a mean value of 1.122 × 103 kg m−3 with a standard deviation of 0.4 % was
obtained. The uncertainty in ρm (i.e. the 95 % confidence value) is thus estimated as
0.8 %.

As we have seen in § 2.2, the discrepancy between the measured and theoretically
estimated free-stream Pitot pressures and the variation in the measured Pitot pressure
during the test time were typically less than 1 % and 2 %, respectively; 95 %
confidence intervals for these quantities (the former using the t-distribution to account
for the small sample size) are estimated as 1.6 % and 3 %. Since the Pitot pressure
scales as approximately ρaV2, the corresponding errors in v′y from these free-stream
uncertainties will be half the values just quoted. These estimates are also consistent
with measurements of the drag coefficients of the primary spheres during the constant-
acceleration periods of their trajectories (the same periods used in the precision
estimates described in the last paragraph of the previous subsection), in which a
standard deviation of 1.1 % was found.

From the displacement-measurement precision estimated in the previous subsection,
the precision in vy (95 % confidence) varies from approximately 0.03 m s−1 for
25.4 mm diameter spheres to 0.06 m s−1 for 6.35 mm diameter spheres; corresponding
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values for the non-dimensional velocity, v′y, are 0.006 and 0.012, respectively. In the
Appendix, it is shown that distortions in the optical set-up can lead to systematic
errors in vy of over 1.5 %, but with the applied distortion correction, this error is
estimated to be less than 0.5 %. The alignment of the grid used for the correction
was checked against the nozzle exit line, and a misalignment of less than 0.02◦ in the
x–y plane was found; any resulting errors can be considered negligible. Additionally,
imprecise initial alignment of the spheres in the spanwise direction (i.e. parallel to
the light path) will influence the measured lateral velocity; however, the estimated
precision of the alignment is of the order of 1◦, and even a misalignment of 5◦ would
lead to an error in vy of less than 0.4 %.

Combining the uncertainties in ρm,
√
ρaV , and vy in the manner described in Moffat

(1982), we obtain overall uncertainties in v′y that depend on the values of both r2/r1

and v′y itself: for v′y = 0.2, the 95 % confidence values for r2/r1 = 0.25, 0.5 and 1.0
are 6.3 %, 4.6 % and 3.5 %, respectively; for v′y = 1.0, these values are 2.1 %, 1.9 %
and 1.8 %. At the lower velocity, the uncertainty in vy tends to be the dominant
contribution, whereas at the higher velocity the uncertainty in

√
ρaV dominates.

In addition to uncertainty in v′y, errors in the effective initial conditions, resulting
from both the start-up period of the facility and the non-instantaneous detachment of
the supporting threads, will also be significant. To determine the impulse imparted
by the detaching threads, experiments were performed with a single sphere. The
lateral impulse imparted by the single thread suspension was estimated from the
measured velocity profiles as approximately 0.12 × 10−4 N s; the axial impulse
could not be separated from the flow-induced loading, but the thread angle during
detachment suggested that this was negligible. For sphere diameters of 25.4, 12.7 and
6.35 mm, this lateral impulse will give rise to velocities of 0.013, 0.1 and 0.6 m s−1,
respectively; the corresponding non-dimensional velocities are 0.003, 0.02 and 0.12.
The V-arrangement suspension, as employed for the primary sphere, was found to
impart a somewhat larger impulse: for a 25.4 mm sphere, the resulting lateral velocity
was typically 0.1 m s−1. Thus, the assumption of a negligible initial relative velocity
was best satisfied for r2/r1 = 0.5; for r2/r1 > 0.5 the spheres effectively possessed a
small negative initial relative velocity (i.e. towards one another) and vice versa.

The influence of the flow start-up period on the effective initial conditions was
estimated in the following manner. At the end of the start-up period, the spheres
will lie in a particular relative configuration and will be carrying certain velocities.
Assuming this combination to be given and that both spheres were initially stationary,
the effective initial positions of the spheres will depend on the individual acceleration
histories. In particular, the initial positions for idealized step-function accelerations (as
assumed in the model problem of the study and implemented in the accompanying
computations) will differ from those for the actual experimental accelerations. We
can quantify this difference if we assume that the force coefficients (based on the
instantaneous flow conditions) are approximately constant during the start-up period
and are proportional to the measured Pitot pressure. These assumptions are supported
by the observation that, in figure 4, the flow structures are well-established within
1.0 ms of the arrival of the initial shock (compared to the entire start-up duration of
approximately 3.5 ms). Thus, using a typical measured Pitot pressure history together
with representative force coefficients, we find that the spheres effectively travel further
in reaching the same velocity for the experimental acceleration histories, an effect that
is more pronounced for smaller spheres. This is caused by the more gradual onset of
the experimental aerodynamic loading and means that, in the idealized model problem
approximated by a given experiment, the secondary body has a slightly downstream
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and laterally separated initial position relative to its actual physical position. This
effective initial lateral separation is quite uniform for different r2/r1, at 0.3 mm or
0.02r1. However, the effective-alignment-angle discrepancy resulting from the offset in
the axial direction varies strongly with r2/r1: for r2/r1 = 0.25, 0.5 0.625, 0.75 and 1,
the calculated angles are 4.5◦, 1.4◦, 0.8◦, 0.4◦ and 0◦, respectively.

3. Computational modelling
3.1. Numerical approach

As in Laurence & Deiterding (2011), we employ the Cartesian fluid solver framework
AMROC (Deiterding 2005b; Deiterding et al. 2005, 2007; Deiterding 2009, 2011a,b;
Ziegler et al. 2011) to simulate numerically the fluid–structure interaction of the
free-flying spherical bodies. The equations solved to model the inviscid compressible
fluid are the Euler equations in conservation-law form

∂tρ +∇ · (ρu)= 0, ∂t(ρu)+∇ · (ρu⊗ u)+∇p= 0,

∂t(ρE)+∇ · ((ρE + p)u)= 0.

}
(3.1)

Here, ρ is the fluid density, u the velocity vector, and E the specific total energy.
The hydrostatic pressure p is given by the polytropic gas equation, p = (γ −
1)(ρE − (ρuTu/2)). We approximate (3.1) in three space dimensions using a discretely
conservative Cartesian finite-volume discretization built on dimensional splitting. The
flux-vector splitting approach by Van Leer is used to evaluate an upwinded numerical
flux at cell interfaces; the MUSCL-Hancock reconstruction technique with Minmod-
limiter is employed to construct a high-resolution method that is of second-order
approximation accuracy away from shocks and contact discontinuities, cf. Deiterding
(2003).

The spherical bodies are represented on the Cartesian mesh with a scalar level-set
function, ϕ, that stores the signed distance to the nearest point on either sphere surface
to each finite-volume cell centre. For non-overlapping spheres, the evaluation of ϕ is
straightforward and we adopt the convention ϕ > 0 in the fluid domain and ϕ < 0
inside the solid bodies. By utilizing the sign of ϕ, the first layer of cells inside
each body can be identified; the vector of state in these cells is then adjusted to
model the relevant non-Cartesian boundary conditions, i.e. a rigid sphere moving with
velocity v, before applying the unaltered Cartesian finite-volume discretization. The
last step involves the interpolation and mirroring of ρ, u, and p across the sphere
boundary and the modification of the normal velocity in the immersed boundary
cells to (2v · n − u · n)n, with n = ∇ϕ/|∇ϕ|, cf. Deiterding (2009). The benefit
of this immersed-boundary, aka ‘ghost fluid’ method (Fedkiw et al. 1999) is the
natural incorporation of moving bodies. However, the approach usually reduces the
approximation accuracy along the immersed boundary, in the present implementation
to first order. We mitigate this error by applying automatic, dynamic mesh adaptation
along ϕ = 0 and additionally to important flow features, specifically to gradients larger
than a certain threshold in the fluid density. A representative snapshot of part of the
evolving adaptive mesh from one simulation is visualized in figure 5. The adopted
mesh adaptation method is the recursive block-structured algorithm for explicit finite-
volume discretizations after Berger & Colella (1988), allowing simultaneous adaptive
mesh refinement (AMR) in time and space by the same factor, lj, for each additional
level j. In AMROC, the AMR method is fully parallelized for distributed memory
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FIGURE 5. Cuts through part of the computational domain of set-up 5 described in table 1
at t = T + 6.4151, visualizing the mesh adaptation around the two bodies together with the
shock waves on the cut planes. Two additional levels of refinement with l1,2 = 2 are used.

machines, including automatic load balancing and parallel re-partitioning as the mesh
refinement hierarchy changes throughout a computation (Deiterding 2005a).

In the simulations described hereinafter, the spheres are always fully enveloped by
cells at the highest level of mesh adaptation, and no exchange of kinetic energy by
direct contact is allowed to take place. The hydrodynamic force, f , on each body is
updated after every highest-level time step by integrating the pressure over the body
surface, for the purpose of which spherical longitude–latitude grids are temporarily
constructed. The position of each sphere’s centre, x, is then updated by advancing
the equation of motion, ẍ = f /m, with mass m = (4/3)πr3ρm. Finally, the level-set
function is re-calculated taking into account both spherical bodies.

3.2. Model verification
In order to demonstrate the accuracy and computational performance of the numerical
model, in this subsection we discuss in detail a series of consecutively refined
computations for a specific case, corresponding to the experiment visualized in
figure 9(c). Since it is the non-dimensional results that are ultimately of interest,
some freedom exists in setting up the problem. In order to provide a benchmark case,
we describe the actual configuration simulated.

We study the problem at hand in a Galilean frame of reference and use a
computational domain of size [0, 3] × [0, 2.5] × [0.1, 1.9]. The spheres have radii
r1 = 0.2, r2 = 0.125 and their centres are initially located at (0.35, 1, 1) and
(0.3542, 1.3250, 1), respectively. The density of both bodies is set to ρm = 2800
(note that, provided the sphere velocities remain much smaller than the flow velocity,
the non-dimensional results are independent of the value of ρm/ρa). By specifying
ρa = 1.4, γ = 1.4, uniform initial conditions ρ0 = ρa, u = 0, p0 = 1, and inflow
conditions with ρi = ρa and pi = 1, the magnitude of the inflow velocity vector
becomes identical to the Mach number. An inflow with Vi = (4, 0, 0) is prescribed
at the left domain boundary; outflow boundary conditions are applied at all other
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No. Base grid l1 l2 1xmin Steps Time (h) Cores CPU (h)

1 150× 125× 90 1 1 0.0200 6 131 7.2 128 918
2 225×188×135 1 1 0.0133 9 245 16.8 128 2 151
3 150× 125× 90 2 1 0.0100 12 298 40.4 128 5 176
4 150× 125× 90 3 1 0.0067 18 522 72.4 128 9 271
5 150× 125× 90 2 2 0.0050 24 704 143.8 256 36 808
6 150× 125× 90 2 3 0.0033 37 176 318.3 256 81 474

TABLE 1. Computational parameters of the verification study. Six configurations of
successively increasing refinement are investigated.

sides. For t < 0.25, the inflow velocity is continuously increased by specifying
Vi(1 − exp(−t/0.05)) as the boundary condition; for t > 0.25, a constant value of
Vi is used. The computation is separated into two parts: during the interval t = [0,T]
the spheres are held stationary and a quasi-steady flow field is established; for t > T
the two bodies are allowed to move freely according to the forces experienced. The
present computation uses T = 6 and a final simulated time of te = T + 16.

The verification study consists of six simulations with progressively increasing
resolution; the relevant computational parameters, including the spatial resolution at
the highest level of mesh refinement, 1xmin, are provided in table 1. Set-ups 1 and
2 use uniform grids; set-ups 3 and 4 employ one additional level of mesh adaptation
with refinement factors of 2 and 3; set-ups 5 and 6 use two additional refinement
levels with l1 = 2 and l2 equal to 2 and 3, respectively. All computations employ
automatic time step adjustment based on a CFL (Courant–Friedrichs–Levy) condition
number of 0.9. The computations were run on an IBM BG/P machine, using 128 or
256 processor cores. Set-up 1 completed in ∼7.2 h wall time (∼918 CPU hours). The
largest run, set-up 6, computed continuously for almost 2 weeks, requiring ∼81 474
CPU hours. Although this number might appear large, the savings from utilizing mesh
adaptation are considerable: a uniform computation with the effective resolution of
set-up 6 would be 64 = 1296 times more expensive than set-up 1. Multiplying the
set-up-1 CPU time yields 1, 189, 728 h, or a potential saving from using AMR of a
factor ∼14.6.

In figure 6 are plotted the secondary drag and lift coefficients (CD and CL) versus
the computational time for the six simulations in the verification study. Significant
oscillations are observed in the profiles from the coarser simulations: these are
caused by the effective change in the body geometry as it moves through the
Cartesian computational grid, since the surface of the body is only resolved to the
grid resolution. A general trend for the force coefficients to decrease in magnitude
with increasing refinement is observed. This can be attributed to a decrease in the
lateral primary bow-shock displacement as the resolution is increased, as noted in the
refinement study of Laurence et al. (2007). In the present case, this will lead to an
effective increase in the lateral displacement of the secondary sphere relative to the
primary shock, resulting in a more rapid expulsion and giving rise to the observed
trends in the force coefficients. Overall, adequate convergence under grid refinement
can be inferred from figure 6. Tabulated results from the verification study can be
found in the online supplementary material available at http://dx.doi.org/10.1017/jfm.
2012.453.

The standard configuration for the numerical simulations that are compared to
experiments in § 4.2 is a two-level computation with l1,2 = 2, as in set-up 5. Analysis
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FIGURE 6. Time-resolved secondary force coefficients calculated in the six verification
computations described in table 1, with the lightest to darkest curves corresponding to
simulations 1 to 6 respectively.

(a) (b)

FIGURE 7. Schlieren plots of density (a) and domains of the two additional AMR levels (b),
indicated by different grey scales, for t = T + 8.974 in the set-up 5 simulation.

of the grid refinement results suggests that this particular set-up evaluates the lateral
velocities of the secondary and primary bodies with deviations of less than 3 % and
2.5 %, respectively, from the fully converged values. Example flow visualizations from
simulation 5 are presented in figure 7. Figure 7(a) shows planes of pseudo-schlieren
(i.e. velocity-gradient magnitude) images perpendicular to the coordinate axes through
the sphere centres; figure 7(b) visualizes the embedded domains covered by the first
and second refinement levels using different grey scales, onto which local pseudo-
schlieren visualizations are additionally overlaid. To visualize the dynamics of the
separation process, two colour MPG movies corresponding to the images of figure 7
are available at http://dx.doi.org/10.1017/jfm.2012.453. For reference, these movies
additionally display the computational time, t, and the x- and y-coordinates of the
sphere centres throughout the entire simulation.

As a first validation result, in figure 8 we compare an experimental visualization
to a similar image derived from simulation 5. For this single experiment, schlieren
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(a) (b)

FIGURE 8. Comparison of (a) experimentally and (b) computationally (set-up 5, t =
T + 7.8367) derived visualizations of the gradient of the fluid density in the y-direction. In the
experimental image, the gradient has been effectively integrated through the fluid domain in
the z-direction, while the computational image shows the gradient only on the central plane,
z= 1.

images were obtained through the introduction of a horizontal knife edge, enabling
better visualization of weak features such as the separation regions behind the
two spheres. This is intended simply as a qualitative comparison of flow fields,
since the configurations are not identical. Moreover, the numerical image visualizes
the density gradient in the y-direction only on the central plane, z = 1, rather
than integrating through the fluid domain; thus, three-dimensional features such as
the deflected primary bow shock downstream of the shock–shock interaction are
visible in the experimental image but not in the numerical one. The experimental
configuration shows earlier flow separation on the rear primary surface, which can be
explained by the lack of physical viscosity in the computational model. However,
as the aerodynamic forces at this Mach number are dominated by the pressure
contribution on the forebody (see, for example, Hoerner 1965), the differing separation
points should have only a minor effect on the forces experienced. Aside from this
discrepancy, the qualitative flow features show good agreement: in particular, both
images clearly show that the flow in the primary wake region does not interact with
the bow shock ahead of the secondary body.

4. Results and discussion
4.1. Qualitative separation behaviour

The two parameters varied in the experimental investigation were the radius ratio,
r2/r1, and the initial alignment angle between the sphere centres, θ0. In figures 9 and
10 are shown sequences of shadowgraph images from experiments in which each of
these two parameters was varied independently of the other. First, in figure 9, we see
the effect of varying the radius ratio while the sphere centres are kept initially aligned
(to within 1◦) in the axial direction. Here the convention adopted for the alignment
angle is that θ0 = 0 corresponds to exact axial alignment of the sphere centres,
with θ0 < 0 indicating that the secondary sphere centre initially lies downstream of
the primary centre. Systematically increasing r2/r1, the behaviour transitions from
immediate entrainment of the secondary sphere within the flow region bounded
by the primary shock (r2/r1 = 0.25), to limited surfing followed by entrainment
(r2/r1 = 0.5), extended surfing (r2/r1 = 0.625), rapid expulsion of the secondary sphere
from the region bounded by the primary shock (r2/r1 = 0.75), and finally symmetrical
separation (r2/r1 = 1). Qualitatively, this is consistent with the behaviour observed at
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(a)

(b)

(c)

(d )

(e)

FIGURE 9. Separation behaviour for configurations with various radius ratios and
(approximate) initial alignment of the sphere centres in the axial direction. The duration
between the first and last image varies between sequences, but is typically around 12 ms:
(a) r2/r1 = 0.25, θ0 = 0.4◦; (b) r2/r1 = 0.5, θ0 = −0.1◦; (c) r2/r1 = 0.625, θ0 = −0.7◦; (d)
r2/r1 = 0.75, θ0 =−1.1◦; and (e) r2/r1 = 1.00, θ0 =−0.6◦.

(a)

(b)

(c)

FIGURE 10. Separation behaviour for configurations with a constant radius ratio, r2/r1 = 0.5,
and varying initial alignment angles: (a) θ0 =−1.9◦; (b) θ0 = 4.1◦; (c) θ0 = 22.8◦.



Dynamical separation of spherical bodies in supersonic flow 15

(a) (b)

(c) (d )

FIGURE 11. Computational schlieren images for r2/r1 = 0.625, θ0 = −0.7◦, with equivalent
experimental sphere positions (corrected for gravity) overlaid; the experimental radii are
reduced by 10 % for clarity. Images (a), (b) and (d) correspond to the experimental images of
figure 9(c).

higher Mach numbers by Laurence & Deiterding (2011). Comparing the trajectories
for r2/r1 = 0.5 and 0.625, it is apparent that the critical radius ratio delineating
entrainment from expulsion lies somewhere between these two values.

Now comparing the sequences in figure 10, the effect of varying only the initial
alignment angle may be seen, in this case for r2/r1 = 0.5. Moving the initial secondary
position forward relative to the primary sphere (i.e. increasing θ0) produces a similar
effect to increasing the radius ratio, since in either case the secondary body is
effectively shifted further outside the primary bow shock. For θ0 =−2◦, the secondary
sphere becomes entrained, slightly more quickly than in the θ0 = 0 case seen in
figure 9(b). Increasing the alignment angle to 4◦ results in extended surfing of the
secondary body, and it is not clear when the body leaves the visualization window
whether it will be ultimately entrained or expelled. Increasing θ0 further to 23◦ leads
to a trajectory similar to that for r2/r1 = 0.75, θ0 = −1.1◦ (shown in figure 9d), with
the secondary body separating rapidly in the lateral direction and soon leaving the
influence of the primary shock.

4.2. Comparison of experimental and computational results
In this subsection, we compare results from selected experiments and corresponding
numerical simulations. In figure 11, computational pseudo-schlieren images are shown
for r2/r1 = 0.625, θ0 = −0.7◦, i.e. the configuration of the verification study of § 3.2.
For comparison, equivalent experimental sphere positions have been overlaid, with
the sphere radii reduced by 10 % for clarity. The experimental positions have been
adjusted to account for the influence of gravity, as is the case for all experimental
results presented hereinafter. The non-dimensional time, t′ = √ρa/ρmtV/r1, has been
matched between computation and experiment; the respective t′ = 0 points (i.e.
corresponding to t = T in the notation of § 3) were determined in a manner outlined
shortly. Images (a), (b) and (d) correspond to the experimental images of figure 9(c).
A movie comparing the entire separation is included online. Qualitatively, agreement
between the sphere trajectories is good, and the experimental shock structures are
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FIGURE 12. Comparison of experimental and computational force coefficients for
r2/r1 = 0.5 and θ0 = −0.1◦: —�—, experimental primary sphere; —, computational
primary sphere; – –�– –, experimental secondary sphere; – – –, computational secondary
sphere. The normalized variables are t′ = √ρa/ρmtV/r1, CD = 8ρmaxr/(3ρaV2) and CL =
8ρmayr/(3ρaV2).

accurately reproduced by the computation. However, there is some quantitative
disagreement in the sphere positions. The first discrepancy appears in the lateral
position of the primary sphere, with the experimental body separating to a lesser
degree. The relative trajectories of the secondary spheres are subsequently affected:
the experimental sphere is pushed further outwards laterally and also accelerates more
rapidly in the axial direction (these effects can be attributed to the increased lift and
drag coefficients experienced by a secondary sphere as its position is moved inwards
from the free stream towards the primary bow shock – see Laurence & Deiterding
2011). The most likely explanation for the initial discrepancy in the primary sphere
motion is the lateral impulse imparted by the detaching threads, as discussed in § 2.5.

In figure 12, we compare force coefficients for r2/r1 = 0.5, θ0 = −0.1◦ (i.e. the
experiment shown in figure 9b). Comparisons of additional non-dimensional quantities
for this configuration can be found in the online supplementary material. In the
numerical simulation, the instant at which the spheres are released is precisely
specified; in the experiment, however, the corresponding release instant is not well-
defined due to the finite duration of the flow start-up. As the measured velocities
provide the clearest indication of the initiation of the sphere motion, the experimental
t′ = 0 point is chosen such that the initial axial velocity profiles of the primary sphere
match as closely as possible. After the flow start-up period (t′ > 1.5), the numerical
simulation underestimates the primary drag coefficient by approximately 1.5 %, which
can be attributed to the lack of viscous contributions in the computation. We do not
expect to obtain agreement in the force coefficients during the start-up period, as the
flow conditions have not yet reached the steady values assumed in the derivation of
the experimental coefficients. The secondary drag profiles exhibit larger discrepancies
than the primary profiles, the computational curve lying approximately 6 % lower from
t′ = 1.5 to 3.5. This is not surprising, however, considering that the secondary force
coefficients will be much more sensitive to the exact relative positions of the spheres,
especially in the later stages of the separation when the primary sphere is outside the
domain of influence of the secondary sphere. The lift profiles of the primary sphere
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FIGURE 13. Normalized secondary lateral velocity as a function of the non-dimensional
time in experiments (symbols) and numerical simulations (lines in matching shades): �,
r2/r1 = 0.25; ©, r2/r1 = 0.5; 4, r2/r1 = 0.625; �, r2/r1 = 0.75; C, r2/r1 = 1.

also show some discrepancy: this appears to result primarily from a deficit in the
repulsive force experienced during the flow start-up, again consistent with the impulse
imparted by the threads during detachment. The secondary lift curves show good
overall agreement.

As the secondary lateral velocity is the quantity of principal interest here,
in figure 13 we compare time-resolved non-dimensional lateral velocities from
experiments and numerical simulations for the five configurations shown in figure 9.
Agreement for the smallest radius ratio, r2/r1 = 0.25, is poor. This is because of the
low mass of the secondary sphere (0.15 g), which gives rise to both a significant
discrepancy in the effective initial alignment angle and a large impulsive velocity
imparted by the detaching threads, as discussed in § 2.5. Agreement for r2/r1 = 0.5
and 1 is very satisfactory, both in the time development of the velocity profiles and
in the maximum velocities attained. Slightly larger discrepancies are observed for
r2/r1 = 0.625 and 0.75: although each shows good agreement initially, in the later
stages of motion the computational lateral velocity decreases more rapidly than in
the experiment, indicating that the computational secondary sphere is being expelled
earlier from the flow region bounded by the primary bow shock. The origin of this
discrepancy for r2/r1 = 0.625 has already been discussed in association with figure 11,
and the observations made there also apply to r2/r1 = 0.75. Nevertheless, agreement
for these two cases can be considered adequate.

We note that for r2/r1 = 0.25 and 0.5, the lateral acceleration becomes negative
once the secondary sphere is fully entrained within the region bounded by the primary
bow shock, indicating that the lateral force is attractive here. This was predicted
theoretically by Laurence et al. (2007) and is due to the decreasing Pitot pressure
moving inwards from the bow shock towards the axis of symmetry of the primary
sphere. Thus, the lateral velocity of an entrained secondary sphere reaches a well-
defined maximum.

Summarizing these results, with the exception of the r2/r1 = 0.25 case, the overall
agreement observed between experiment and computations is satisfactory. In particular,
we conclude that neither the flow start-up period in the experiments nor the lack of
physical viscosity in the numerical simulations are significant obstacles to obtaining
meaningful quantitative results in the present investigation.
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FIGURE 14. Normalized experimental separation velocity of the secondary body as a
function of the initial alignment angle with the primary body: ©, r2/r1 = 0.25; �, r2/r1 = 0.5;
4, r2/r1 = 0.625; �, r2/r1 = 0.75; C, r2/r1 = 1. Open symbols indicate that the secondary
body was still being influenced by the primary shock when it left the visualization area: in
(a) these points are the directly measured values, whereas in (b) the velocities have been
extrapolated.

4.3. Parameterized separation velocities

We now consider the quantitative variation in the secondary separation velocity as
a function of the two independent parameters, θ0 and r2/r1. In figure 14, the
normalized separation velocity, V ′T , is plotted versus the initial alignment angle for
five radius ratios: r2/r1 = 0.25, 0.5, 0.625, 0.75 and 1. V ′T , is defined here as the
maximum value of v′y2 attained during the trajectory. In figure 14(a) are plotted
directly measured values: solid symbols indicate cases in which the secondary sphere
was either entrained or completely expelled within the visualized trajectory; open
symbols indicate that the secondary sphere was still being repulsed when it left the
visualization window. In order to estimate the final velocity that would result in these
latter cases, the lateral acceleration curves were linearly extrapolated based on the
final 3.5 ms of visualized flight. The final separation velocities were then taken as the
values when these extrapolated accelerations became zero; these results are shown in
figure 14(b).

For r2/r1 = 1, V ′T shows only a weak dependence on the alignment angle, increasing
from 0.19 for θ0 = 15.8◦ to 0.25 for θ0 = −9.9◦. In all of these experiments, the
trajectories of the two spheres took them completely outside the influence of one
another’s bow shock. For r2/r1 = 0.75, a stronger effect of the alignment angle is
observed, with V ′T increasing more markedly with decreasing θ0. Again, however,
no secondary entrainment was obtained over the range of initial angles considered
(−13.2–16.4◦), indicating that the critical alignment angle delineating entrainment
from expulsion for this radius ratio is less than −13◦. For r2/r1 = 0.625 and 0.5, a
well-defined maximum in V ′T is clearly reached within the range of θ0 considered: for
r2/r1 = 0.5 this occurs at approximately θ0 = 4.1◦, and for r2/r1 = 0.625 somewhere
between −6.2◦ and −0.7◦. As θ0 is decreased from this critical value, a transition
to entrainment occurs and V ′T drops monotonically. For r2/r1 = 0.25, the secondary
sphere was entrained for the three smaller alignment angles and barely expelled at
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FIGURE 15. Normalized secondary separation velocity versus the radius ratio for initial axial
alignment of the sphere centres: �, experimental results; 4, refined computational result with
identical initial alignment angles to experiments; ©, coarse computational result with θ0 = 0;
– – –, prediction of Passey & Melosh (1980). Open points indicate extrapolated values.

the maximum angle considered (31.6◦), indicating that the critical angle lies slightly
below this value. The peak separation velocity attained over all alignment angles is
seen to increase with decreasing radius ratio, which can be explained by the higher
acceleration experienced by a body of smaller mass, all other things being equal.

In figure 15, the normalized separation velocity is plotted as a function of the radius
ratio for axially aligned initial configurations (here |θ0| < 1.5◦); for r2/r1 = 0.625
the extrapolated velocity is used. In addition to the experimental values, we show
numerical results from both the refined computations discussed in § 4.2, in which
the same alignment angles as in the experiments were specified, and more extensive
coarse simulations in which the alignment angle was set uniformly to θ0 = 0. For
the latter, only a single level of grid refinement of factor 3 was employed, and the
density ratio, ρm/ρa, had half the value of the more refined computations. As was
noted of the qualitative secondary behaviour in § 4.1, the effect of increasing the
radius ratio on V ′T is similar to that of making the alignment angle more positive.
As we increase r2/r1 from 0.25, V ′T rises sharply until a maximum is reached at
the critical ratio, predicted by the coarse simulations to lie at approximately 0.58;
thereafter, V ′T drops away steeply to a value of 0.24 for r2/r1 = 1. This general
behaviour is again similar to that observed at higher Mach numbers by Laurence
& Deiterding (2011). Comparing the experimental separation velocities with those
from the refined numerical simulations, the results are as would be expected from an
examination of figure 13. For the smallest radius ratio, r2/r1 = 0.25, the experimental
value is significantly higher because of the low mass of the experimental secondary
sphere; an identical secondary sphere was employed for the r2/r1 = 0.4 experiment,
and a similar discrepancy with the coarse numerical result is observed. For r2/r1 = 0.5
and 1, the experimental and refined numerical results lie very close to one another
(with differences of 1.3 % and 1.1 %), but the discrepancies at radius ratios of 0.75
and 0.625 are somewhat larger, at 6 % and 11 %, respectively (though in the latter
case, the extrapolation of the experimental result may have exaggerated this difference
somewhat). A likely explanation for these differences has been discussed in reference
to figure 13. Also shown in figure 15 is the scaling law of Passey & Melosh (1980),
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FIGURE 16. Computed normalized separation velocity of the secondary body for different
Mach numbers, assuming initial axial alignment of the sphere centres (θ0 = 0): �, M = 4; �,
M = 6; ©, M = 10; 4, M = 25. In (a), the velocity data are plotted against the radius ratio;
in (b), the abscissa is the initial lateral location of the outside edge of the secondary sphere
normalized by the lateral primary bow-shock displacement at the relevant Mach number.

as given by (1.1). Poor agreement with the experimental and numerical results is
observed.

4.4. Effect of Mach number
It is clear from comparing the results in figure 15 to those in figure 18 of Laurence &
Deiterding (2011) that the separation behaviour is qualitatively similar over the range
of Mach numbers considered in the two works (M = 4, 10 and 25). It is thus of
interest to consider what quantitative differences might exist between the supersonic
Mach number considered here and the hypersonic Mach numbers of the earlier
study. In figure 16(a) we show normalized separation velocities versus the radius
ratio for four Mach numbers, all with θ0 = 0: results for M = 10 and 25 are taken
from Laurence & Deiterding (2011), the coarse-grid M = 4 results from figure 15
are again shown, and an intermediate Mach number of 6 is also included. With the
exception of the Mach number, all significant parameters in these computations (e.g.
grid resolution, density ratio) were identical, allowing the Mach-number effects to be
isolated.

Each of the profiles shows the distinctive peak in separation velocity at the critical
radius ratio, with a rapid falling off to either side. It should be noted that the
M = 4 peak is extrapolated; for the M = 10 peak, the lateral acceleration was still
increasing when the secondary sphere left the computational domain, and thus a
linearly extrapolated velocity could not be calculated. The value of the critical ratio
varies between the different Mach numbers, increasing from approximately 0.45 for
M = 25 to 0.58 for M = 4. This variation can be at least partially explained by
the growing lateral displacement of the primary bow shock with decreasing Mach
number: for a larger shock radius, the secondary sphere will effectively lie further
inside the shock at the same initial position, hence a larger radius ratio will be
required to achieve the same degree of repulsion. Therefore, in an attempt to scale
out the effect of the primary bow-shock location, in figure 16(b) we present the same
velocity data, but with the abscissa now the scaled distance (r1 + 2r2)/Rs, where Rs

is the radial location of the primary bow shock (at the initial axial location of the
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sphere centres) as given by the correlation of Billig (1967). This modified abscissa
is thus the initial lateral location of the outer secondary-sphere edge, normalized by
the bow-shock displacement. With this choice of scaling the curves collapse much
more closely upon one another, indicating that the Mach-number effect observed in
figure 16(a) is indeed caused primarily by differences in the effective initial position of
the secondary sphere relative to the primary bow shock. This collapsing also suggests
that the dominant physical phenomena are qualitatively similar over the range of Mach
numbers considered.

5. Conclusions

We have carried out an extensive experimental investigation of the dynamical
separation characteristics of two initially contiguous spherical bodies in supersonic
flow (M = 4). In general, the behaviour was found to be similar to that observed
analytically and computationally at hypersonic Mach numbers (Laurence & Deiterding
2011). For small radius ratios, the secondary sphere is likely to be entrained within
the flow region bounded by the primary bow shock, whereas larger secondary
spheres show an increased tendency to be expelled from this region. The likelihood
of entrainment increases as the initial position of the secondary sphere is moved
downstream relative to the primary sphere. At a critical alignment angle for a given
radius ratio (or a critical radius ratio for a given alignment angle), the secondary
sphere ‘surfs’ the primary bow shock, tracing a trajectory so as to follow the shock
downstream. This critical angle or radius ratio effectively delineates entrainment from
expulsion and also results in the maximum separation velocity with respect to the
varied parameter. For r2/r1 = 0.5, a critical initial alignment angle of approximately
4◦ was found (with the secondary sphere centre lying upstream of the primary sphere
centre); this critical angle varied markedly with the radius ratio, increasing from less
than −13◦ for r2/r1 = 0.75 to approximately 30◦ for r2/r1 = 0.25. For initial axial
alignment of the sphere centres, a critical radius ratio of slightly less than 0.625 was
deduced. This critical ratio is larger than that found for hypersonic perfect-gas flows
(approximately 0.45 for M > 10), a difference that was attributed primarily to the
increased lateral displacement of the primary bow shock at lower Mach numbers.

A visualization-based tracking technique allowed quantitative comparisons between
the experimental results and high-resolution inviscid numerical simulations. Generally
favourable agreement was obtained, the main exception being for a low-mass (<1 g)
secondary body, in which case the start-up processes in the experimental facility
played a decisive role. Excluding this case, the final separation velocities of the
computational and experimental secondary spheres showed agreement to between 1 %
and 11 %. This lends a high degree of confidence to both the experimental and
computational approaches employed here.
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FIGURE 17. (a) Images showing the transparent grid used to derive the correction
polynomials for optical distortions, and the sphere configuration for which the distortion
error is quantified in the accompanying plot. (b) Distortion errors in the measured sphere
edge points for the primary body (lower profiles) and secondary body (upper profiles): ©,
uncorrected points; 4, points with distortion correction applied. The anomaly in the corrected
secondary profile at 90◦ is caused by the protrusion due to the remnant of the suspension
thread.

Appendix. Correction of distortion errors
In visualization-based measurement techniques, the distortion error associated

with the optical set-up can often be problematic. With regard to the technique
employed in the present work, optical distortions were noted by Laurence & Karl
(2010), but their effect on the tracking technique could not be quantified beyond
a rough estimate. Here, with the relatively large range of motion experienced by
the spheres, such distortions were found to become a significant factor, and an
attempt was made to both characterize and correct for the resulting errors. A
transparent plate with circular dimples precision-machined at 25.4 mm intervals was
placed inside the test section, and images were recorded with the optical set-
up employed for the sphere experiments. The visualized positions of the dimples
were determined using the tracking routine described in § 2.4 and compared to a
uniform grid. A third-order polynomial transformation between image coordinates,
(x̂, ŷ), and physical coordinates, (x, y), was then defined for each of x and y, e.g.
x = a + bx̂ + cŷ + dx̂2 + ex̂ŷ + f ŷ2 + gx̂3 + hx̂2ŷ + ix̂ŷ2 + jŷ3, and the coefficients were
determined by a least-squares fit over all determined dimple positions.

With the coefficients for each of x and y thus calculated, the correction was
incorporated into the tracking algorithm by applying it to the detected edge points
prior to the fitting of the circular profiles. Applying the transformation directly to
the image would also be possible, but would be more expensive computationally. A
typical reduction in the distortion of the sphere profiles enabled by this correction
is shown in figure 17. The deviation between the radii of the detected edge points
and the overall fitted radius is plotted here against the internal angle, φ, for each of
the two spheres in the image shown (normalized by the fitted radius in each case),
for both the original and corrected edge points. The deviation for the larger sphere,
which originally reaches 1 %, is reduced by a factor of approximately 10, while the
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FIGURE 18. Example of the effect of the distortions present in the optical system on the
measured lateral velocity of the secondary body: – – –, corrected; —, uncorrected.

reduction for the smaller sphere is by a factor of 6. Furthermore, the root-mean-square
(r.m.s.) deviation in both cases is now approximately 0.03 pixels, which is close to the
expected accuracy of the edge detection routine under noisy conditions (Laurence &
Karl 2010); or 10 µm, which is near the quoted sphericity of the spheres employed
(13 µm).

As the quantity of main interest in the present study is the lateral separation velocity
of the secondary body, in figure 18 is plotted an example of a time-resolved lateral
velocity profile, both with and without the distortion correction incorporated into the
measurements. The discrepancy between the two results is initially negligible, but
grows to 1.7 % by the time the maximum lateral velocity is reached. As the correction
employed has already reduced the error in the sphere profile by a factor of 6, we
can roughly estimate the remaining velocity error to be of the order of 0.3 %. Given
the other experimental uncertainties discussed in § 2.5, any further improvement to the
distortion correction is unlikely to offer significant benefits.
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