Homework 4

Due: Wednesday, February 25

Problem 1

Compute $E(X)$ if X has a density function given by
(a) $f(x)= \begin{cases}e^{-x}, & x>0 \\ 0, & \text { elsewhere }\end{cases}$

Hint: you will need integration by parts.
(b) $f(x)= \begin{cases}c\left(1-x^{2}\right), & -1<x<1 \\ 0, & \text { elsewhere }\end{cases}$
where c is a constant whose value you should determine from the properties of a probability density function.

Problem 2

The density function of X is given by

$$
f(x)= \begin{cases}a+b x^{2}, & 0 \leq x \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

If $E(X)=\frac{3}{5}$, find a and b.

Problem 3

A man aiming at a target receives 10 points if his shot is within 1 inch of the target, 5 points if it is between 1 and 3 inches of the target, and 3 points if it is between 3 and 5 inches of the target. Find the expected number of points scored if the distance from the shot to the target is a continuous random variable with probability density

$$
f(x)= \begin{cases}\frac{1}{10}, & 0 \leq x \leq 10 \\ 0, & \text { elsewhere }\end{cases}
$$

(A random variable with such probability density function is said to be uniformly distributed between 0 and 10.)

Problem 4

Let X be such that

$$
P(X=1)=p \quad P(X=-1)=1-p
$$

Find $c \neq 1$ such that $E\left(c^{X}\right)=1$.

Problem 5

Two fair dice are rolled. Find the joint distribution of X and Y where X is the smallest and Y is the largest value obtained on the dice.

Problem 6

The joint probability density function of X and Y is given by

$$
f(x, y)=\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) \quad 0<x<1,0<y<2
$$

(If $x \leq 0, x \geq 1, y \leq 0$, or $y \geq 2$ then $f(x, y)=0$)
(a) Compute the density function of X.
(b) Find $P(X>Y)$.

