MA552. Linear Algebra

Definition of a vector space

Definition 0.1. A vector space (or linear space) consists of the following:

- 1. a field F of scalars;
- 2. a set V of objects, called vectors;
- 3. a rule (or operation), called vector addition, which associates with each pair of vectors α , β in V a vector $\alpha + \beta$ in V, called the sum of α and β , in such a way that
 - (a) addition is commutative, $\alpha + \beta = \beta + \alpha$;
 - (b) addition is associative, $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - (c) there is a unique vector 0 in V, called the zero vector, such that $\alpha + 0 = \alpha$ for all α in V;
 - (d) for each vector α in V there is a unique vector $-\alpha$ in V such that $\alpha + (-\alpha) = 0$;
- 4. a rule (or operation), called scalar multiplication, which associates with each scalar c in F and vector α in V a vector $c\alpha$ in V, called the product of c and α , in such a way that
 - (a) $1\alpha = \alpha$ for every α in V;
 - (b) $(c_1c_2)\alpha = c_1(c_2\alpha);$
 - (c) $c(\alpha + \beta) = c\alpha + c\beta;$
 - (d) $(c_1 + c_2)\alpha = c_1\alpha + c_2\alpha$.